↓ Skip to main content

NLR-Dependent Regulation of Inflammation in Multiple Sclerosis

Overview of attention for article published in Frontiers in immunology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NLR-Dependent Regulation of Inflammation in Multiple Sclerosis
Published in
Frontiers in immunology, January 2018
DOI 10.3389/fimmu.2017.02012
Pubmed ID
Authors

Marjan Gharagozloo, Katsiaryna V. Gris, Tara Mahvelati, Abdelaziz Amrani, John R. Lukens, Denis Gris

Abstract

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 96 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 17%
Student > Master 13 14%
Student > Bachelor 13 14%
Student > Doctoral Student 6 6%
Researcher 6 6%
Other 13 14%
Unknown 29 30%
Readers by discipline Count As %
Neuroscience 12 13%
Biochemistry, Genetics and Molecular Biology 12 13%
Agricultural and Biological Sciences 10 10%
Medicine and Dentistry 10 10%
Immunology and Microbiology 10 10%
Other 12 13%
Unknown 30 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 January 2018.
All research outputs
#15,175,718
of 25,382,440 outputs
Outputs from Frontiers in immunology
#14,217
of 31,537 outputs
Outputs of similar age
#236,541
of 451,277 outputs
Outputs of similar age from Frontiers in immunology
#357
of 641 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,277 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 641 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.