↓ Skip to main content

In Silico and Structural Analyses Demonstrate That Intrinsic Protein Motions Guide T Cell Receptor Complementarity Determining Region Loop Flexibility

Overview of attention for article published in Frontiers in immunology, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
18 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In Silico and Structural Analyses Demonstrate That Intrinsic Protein Motions Guide T Cell Receptor Complementarity Determining Region Loop Flexibility
Published in
Frontiers in immunology, April 2018
DOI 10.3389/fimmu.2018.00674
Pubmed ID
Authors

Christopher J. Holland, Bruce J. MacLachlan, Valentina Bianchi, Sophie J. Hesketh, Richard Morgan, Owen Vickery, Anna M. Bulek, Anna Fuller, Andrew Godkin, Andrew K. Sewell, Pierre J. Rizkallah, Stephen Wells, David K. Cole

Abstract

T-cell immunity is controlled by T cell receptor (TCR) binding to peptide major histocompatibility complexes (pMHCs). The nature of the interaction between these two proteins has been the subject of many investigations because of its central role in immunity against pathogens, cancer, in autoimmunity, and during organ transplant rejection. Crystal structures comparing unbound and pMHC-bound TCRs have revealed flexibility at the interaction interface, particularly from the perspective of the TCR. However, crystal structures represent only a snapshot of protein conformation that could be influenced through biologically irrelevant crystal lattice contacts and other factors. Here, we solved the structures of three unbound TCRs from multiple crystals. Superposition of identical TCR structures from different crystals revealed some conformation differences of up to 5 Å in individual complementarity determining region (CDR) loops that are similar to those that have previously been attributed to antigen engagement. We then used a combination of rigidity analysis and simulations of protein motion to reveal the theoretical potential of TCR CDR loop flexibility in unbound state. These simulations of protein motion support the notion that crystal structures may only offer an artifactual indication of TCR flexibility, influenced by crystallization conditions and crystal packing that is inconsistent with the theoretical potential of intrinsic TCR motions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 33%
Researcher 7 17%
Student > Doctoral Student 4 10%
Other 3 7%
Student > Bachelor 3 7%
Other 4 10%
Unknown 7 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 24%
Immunology and Microbiology 7 17%
Agricultural and Biological Sciences 5 12%
Chemistry 4 10%
Physics and Astronomy 4 10%
Other 6 14%
Unknown 6 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2020.
All research outputs
#1,918,943
of 25,382,440 outputs
Outputs from Frontiers in immunology
#1,806
of 31,537 outputs
Outputs of similar age
#40,767
of 343,278 outputs
Outputs of similar age from Frontiers in immunology
#53
of 693 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,278 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 693 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.