↓ Skip to main content

One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy

Overview of attention for article published in Frontiers in immunology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy
Published in
Frontiers in immunology, April 2018
DOI 10.3389/fimmu.2018.00704
Pubmed ID
Authors

Laurie Besson, Emily Charrier, Lionel Karlin, Omran Allatif, Antoine Marçais, Paul Rouzaire, Lucie Belmont, Michel Attal, Christine Lombard, Gilles Salles, Thierry Walzer, Sébastien Viel

Abstract

Multiple myeloma (MM) is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK) cells can recognize and kill MM cells in vitro and can limit MM growth in vivo. Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs) such as lenalidomide (LEN) could enhance it. However, the effects of IMIDs on NK cells have been tested mostly in vitro or in preclinical models and supporting evidence of their effect in vivo in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX) consisting either of association of bortezomib-lenalidomide-dexamethasone (Velcade Revlimid Dexamethasone) or autologous stem-cell transplantation (SCT). We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells ex vivo. Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-β following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 25%
Other 4 10%
Student > Master 4 10%
Student > Ph. D. Student 3 8%
Student > Bachelor 1 3%
Other 3 8%
Unknown 15 38%
Readers by discipline Count As %
Medicine and Dentistry 8 20%
Immunology and Microbiology 6 15%
Agricultural and Biological Sciences 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 3 8%
Unknown 16 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2018.
All research outputs
#16,784,715
of 25,461,852 outputs
Outputs from Frontiers in immunology
#18,424
of 31,696 outputs
Outputs of similar age
#209,978
of 342,281 outputs
Outputs of similar age from Frontiers in immunology
#484
of 698 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,696 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,281 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 698 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.