↓ Skip to main content

Breast Cancer-Derived Exosomes Alter Macrophage Polarization via gp130/STAT3 Signaling

Overview of attention for article published in Frontiers in immunology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
141 Dimensions

Readers on

mendeley
113 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Breast Cancer-Derived Exosomes Alter Macrophage Polarization via gp130/STAT3 Signaling
Published in
Frontiers in immunology, May 2018
DOI 10.3389/fimmu.2018.00871
Pubmed ID
Authors

Sunyoung Ham, Luize G. Lima, Edna Pei Zhi Chai, Alexandra Muller, Richard J. Lobb, Sophie Krumeich, Shu Wen Wen, Adrian P. Wiegmans, Andreas Möller

Abstract

Tumor-derived exosomes are being recognized as essential mediators of intercellular communication between cancer and immune cells. It is well established that bone marrow-derived macrophages (BMDMs) take up tumor-derived exosomes. However, the functional impact of these exosomes on macrophage phenotypes is controversial and not well studied. Here, we show that breast cancer-derived exosomes alter the phenotype of macrophages through the interleukin-6 (IL-6) receptor beta (glycoprotein 130, gp130)-STAT3 signaling pathway. Addition of breast cancer-derived exosomes to macrophages results in the activation of the IL-6 response pathway, including phosphorylation of the key downstream transcription factor STAT3. Exosomal gp130, which is highly enriched in cancer exosomes, triggers the secretion of IL-6 from BMDMs. Moreover, the exposure of BMDMs to cancer-derived exosomes triggers changes from a conventional toward a polarized phenotype often observed in tumor-associated macrophages. All of these effects can be inhibited through the addition of a gp130 inhibitor to cancer-derived exosomes or by blocking BMDMs exosome uptake. Collectively, this work demonstrates that breast cancer-derived exosomes are capable of inducing IL-6 secretion and a pro-survival phenotype in macrophages, partially via gp130/STAT3 signaling.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 113 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 113 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 21%
Researcher 13 12%
Student > Master 11 10%
Student > Bachelor 9 8%
Student > Doctoral Student 8 7%
Other 16 14%
Unknown 32 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 27 24%
Medicine and Dentistry 13 12%
Agricultural and Biological Sciences 13 12%
Pharmacology, Toxicology and Pharmaceutical Science 5 4%
Engineering 5 4%
Other 10 9%
Unknown 40 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 December 2019.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Frontiers in immunology
#22,587
of 31,537 outputs
Outputs of similar age
#250,919
of 341,279 outputs
Outputs of similar age from Frontiers in immunology
#589
of 733 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,279 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 733 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.