↓ Skip to main content

The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection

Overview of attention for article published in Frontiers in immunology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection
Published in
Frontiers in immunology, May 2018
DOI 10.3389/fimmu.2018.00959
Pubmed ID
Authors

Hui Zhi, Jialei Xie, Jon T. Skare

Abstract

Activation of the classical complement pathway occurs to varying degrees within strains of the Borrelia burgdorferi sensu lato complex, which contain a group of pathogenic spirochetes that cause tick-borne Lyme borreliosis, including the agent of Lyme disease in the United States, B. burgdorferi. Despite this information, details related to the control of B. burgdorferi by the classical pathway are not clear. To address this question, we infected C1qα-/- mice, which cannot assemble the C1 complex and thus fail to activate the classical pathway, with B. burgdorferi sensu stricto strain B31. Using bioluminescent in vivo imaging, we found that C1qα-/- mice harbored more B. burgdorferi following 10 days of infection relative to their isogenic C57BL/6 parent. Quantitative PCR (qPCR) demonstrated that C1qα-/- mice harbored significantly more B. burgdorferi than parent mice did within lymph nodes, skin, heart, and joints. The increased B. burgdorferi load in C1qα-/- mice was observed at 21 and 28 days of infection, consistent with the classical pathway promoting complement-dependent, antibody-mediated killing following the development of a B. burgdorferi-specific humoral immune response. In addition, circulating borrelial-specific IgM was higher in C1qα-/- mice relative to their parent mouse strain and did not decrease at 21 and 28 days post-infection, indicating that IgG class switching was delayed in C1qα-/- mice. At day 28, both Borrelia-specific IgG1 and IgG3 levels were higher in infected C1qα-/- mice, but that these antibodies were not sufficient to control borrelial infection in the absence of the classical pathway. Furthermore, the lack of C1q also altered the balance of the Th1/Th2 response, as both circulating Th1 (MIP-1α, IL-2, IL-12, and TNFα), Th2 (IL-4, IL-10, and MCP-1), and Th17 (IL-17) cytokines were elevated in infected C1qα-/- mice. These data imply that C1q and the classical pathway play important roles in controlling borrelial infection via antibody and complement-dependent killing, as well as altering both antibody maturation processes and the T cell response following exposure to infectious B. burgdorferi.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 14%
Student > Ph. D. Student 4 11%
Researcher 4 11%
Student > Master 4 11%
Student > Doctoral Student 3 9%
Other 5 14%
Unknown 10 29%
Readers by discipline Count As %
Immunology and Microbiology 7 20%
Medicine and Dentistry 5 14%
Agricultural and Biological Sciences 5 14%
Biochemistry, Genetics and Molecular Biology 2 6%
Veterinary Science and Veterinary Medicine 2 6%
Other 4 11%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2019.
All research outputs
#14,605,790
of 25,382,440 outputs
Outputs from Frontiers in immunology
#12,364
of 31,537 outputs
Outputs of similar age
#170,677
of 341,525 outputs
Outputs of similar age from Frontiers in immunology
#366
of 724 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,525 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 724 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.