↓ Skip to main content

Lipidomimetic Compounds Act as HIV-1 Entry Inhibitors by Altering Viral Membrane Structure

Overview of attention for article published in Frontiers in immunology, September 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
2 X users
patent
1 patent

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lipidomimetic Compounds Act as HIV-1 Entry Inhibitors by Altering Viral Membrane Structure
Published in
Frontiers in immunology, September 2018
DOI 10.3389/fimmu.2018.01983
Pubmed ID
Authors

Jon Ander Nieto-Garai, Bärbel Glass, Carmen Bunn, Matthias Giese, Gary Jennings, Beate Brankatschk, Sameer Agarwal, Kathleen Börner, F. Xabier Contreras, Hans-Joachim Knölker, Claudia Zankl, Kai Simons, Cornelia Schroeder, Maier Lorizate, Hans-Georg Kräusslich

Abstract

The envelope of Human Immunodeficiency Virus type 1 (HIV-1) consists of a liquid-ordered membrane enriched in raft lipids and containing the viral glycoproteins. Previous studies demonstrated that changes in viral membrane lipid composition affecting membrane structure or curvature can impair infectivity. Here, we describe novel antiviral compounds that were identified by screening compound libraries based on raft lipid-like scaffolds. Three distinct molecular structures were chosen for mode-of-action studies, a sterol derivative (J391B), a sphingosine derivative (J582C) and a long aliphatic chain derivative (IBS70). All three target the viral membrane and inhibit virus infectivity at the stage of fusion without perturbing virus stability or affecting virion-associated envelope glycoproteins. Their effect did not depend on the expressed envelope glycoproteins or a specific entry route, being equally strong in HIV pseudotypes carrying VSV-G or MLV-Env glycoproteins. Labeling with laurdan, a reporter of membrane order, revealed different membrane structure alterations upon compound treatment of HIV-1, which correlated with loss of infectivity. J582C and IBS70 decreased membrane order in distinctive ways, whereas J391B increased membrane order. The compounds' effects on membrane order were reproduced in liposomes generated from extracted HIV lipids and thus independent both of virion proteins and of membrane leaflet asymmetry. Remarkably, increase of membrane order by J391B required phosphatidylserine, a lipid enriched in the HIV envelope. Counterintuitively, mixtures of two compounds with opposite effects on membrane order, J582C and J391B, did not neutralize each other but synergistically inhibited HIV infection. Thus, altering membrane order, which can occur by different mechanisms, constitutes a novel antiviral mode of action that may be of general relevance for enveloped viruses and difficult to overcome by resistance development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 36%
Researcher 6 18%
Other 2 6%
Student > Doctoral Student 2 6%
Professor 2 6%
Other 3 9%
Unknown 6 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 24%
Agricultural and Biological Sciences 4 12%
Medicine and Dentistry 3 9%
Chemistry 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Other 5 15%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 July 2020.
All research outputs
#7,050,597
of 25,385,509 outputs
Outputs from Frontiers in immunology
#7,769
of 31,537 outputs
Outputs of similar age
#114,962
of 345,275 outputs
Outputs of similar age from Frontiers in immunology
#182
of 638 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,275 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 638 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.