↓ Skip to main content

Kinematic Changes during Prolonged Fast-Walking in Old and Young Adults

Overview of attention for article published in Frontiers in Medicine, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Kinematic Changes during Prolonged Fast-Walking in Old and Young Adults
Published in
Frontiers in Medicine, November 2017
DOI 10.3389/fmed.2017.00207
Pubmed ID
Authors

Camila Fonseca Oliveira, Edgar Ramos Vieira, Filipa Manuel Machado Sousa, João Paulo Vilas-Boas

Abstract

Walking biomechanics is known to be influenced by speed. However, most of the research examining the effects of walking speed and gait characteristics has been conducted after a fast-walking task, neglecting the changes that may occur during the task. The aim of the present study was to determine the impact of fast-walking over time on kinematics in young and old adults. Twenty-seven young adults (26.6 ± 6.0 years) and 23 old adults (71.0 ± 5.6 years) walked at 70% of their maximum heart rate for 20 min or until exhaustion, and the effects of fast-walking on temporospatial parameters and on angular kinematics were analyzed during the activity. During the protocol, both age-groups increased step-width variability. Significant effects of time were found for the ankle and hip at toe off for the older group. For the younger group, only the ankle angle at heel strike changed over time. For both groups, fast-walking induced changes in the coordination among the lower-limb angles that were more prominent during the swing phase of the gait. In conclusion, lower-limb kinematics changes in young adults were compatible with early signs of fatigue. The increased step-width variability in older adults may indicate an augmented risk of falling. Changes in the lower-limb walking kinematics of old adults suggest that the adjustments for weight acceptance and body propulsion were restricted to the hip and ankle joints. The kinematic changes among the lower-limb joint angles during the swing phase may compromise the quality of gait. These findings provide a foundation for future studies in the assessment of the risk of falls in older adults associated with walking at a faster pace.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 21%
Student > Bachelor 11 18%
Researcher 7 11%
Student > Master 7 11%
Student > Doctoral Student 4 6%
Other 9 15%
Unknown 11 18%
Readers by discipline Count As %
Medicine and Dentistry 11 18%
Sports and Recreations 10 16%
Nursing and Health Professions 9 15%
Engineering 5 8%
Neuroscience 4 6%
Other 6 10%
Unknown 17 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#14,368,528
of 23,008,860 outputs
Outputs from Frontiers in Medicine
#2,470
of 5,780 outputs
Outputs of similar age
#236,230
of 438,098 outputs
Outputs of similar age from Frontiers in Medicine
#33
of 67 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,780 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.4. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,098 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.