↓ Skip to main content

The Importance of Kinetics and Redox in the Biogeochemical Cycling of Iron in the Surface Ocean

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
1 X user
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
98 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Importance of Kinetics and Redox in the Biogeochemical Cycling of Iron in the Surface Ocean
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00219
Pubmed ID
Authors

Peter L Croot, Maija I Heller

Abstract

It is now well established that Iron (Fe) is a limiting element in many regions of the open ocean. Our current understanding of the key processes which control iron distribution in the open ocean have been largely based on thermodynamic measurements performed under the assumption of equilibrium conditions. Using this equilibrium approach, researchers have been able to detect and quantify organic complexing ligands in seawater and examine their role in increasing the overall solubility of iron. Our current knowledge about iron bioavailability to phytoplankton and bacteria is also based heavily on carefully controlled laboratory studies where it is assumed the chemical species are in equilibrium in line with the free ion association model and/or its successor the biotic ligand model. Similarly most field work on iron biogeochemistry generally consists of a single profile which is in essence a "snap-shot" in time of the system under investigation. However it is well known that the surface ocean is an extremely dynamic environment and it is unlikely if thermodynamic equilibrium between all the iron species present is ever truly achieved. In sunlit waters this is mostly due to the daily passage of the sun across the sky leading to photoredox processes which alter Fe speciation by cycling between redox states and between inorganic and organic species. Episodic deposition events, dry and wet, are also important perturbations to iron cycling as they bring in new iron to the system and alter the equilibrium between iron species and phases. Here we utilize new field data collected in the open ocean on the complexation kinetics of iron in the surface ocean to identify the important role of weak iron binding ligands (i.e., those that cannot maintain iron in solution indefinitely at seawater pH: α(FeL) < α(Fe)') in allowing transient increases in iron solubility in response to iron deposition events. Experiments with the thermal [Formula: see text] source SOTS-1 also indicate the short term impact of this species on iron solubility also with relevance to the euphotic zone. This data highlights the roles of kinetics, redox, and weaker iron binding ligands in the biogeochemical cycling of iron in the ocean.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Germany 1 1%
Unknown 96 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 31 32%
Researcher 19 19%
Student > Master 11 11%
Student > Bachelor 6 6%
Professor 6 6%
Other 14 14%
Unknown 11 11%
Readers by discipline Count As %
Earth and Planetary Sciences 30 31%
Environmental Science 22 22%
Agricultural and Biological Sciences 12 12%
Chemistry 9 9%
Engineering 4 4%
Other 9 9%
Unknown 12 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2021.
All research outputs
#7,173,115
of 22,675,759 outputs
Outputs from Frontiers in Microbiology
#7,588
of 24,472 outputs
Outputs of similar age
#67,823
of 244,088 outputs
Outputs of similar age from Frontiers in Microbiology
#85
of 317 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 24,472 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.