↓ Skip to main content

Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
1 X user
wikipedia
1 Wikipedia page

Readers on

mendeley
121 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00269
Pubmed ID
Authors

Li-Dong Shen, Zhan-Fei He, Qun Zhu, Dong-Qing Chen, Li-Ping Lou, Xiang-Yang Xu, Ping Zheng, Bao-Lan Hu

Abstract

Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by "Candidatus Methylomirabilis oxyfera." M. oxyfera is affiliated with the "NC10" phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 6 5%
Malaysia 1 <1%
United Kingdom 1 <1%
Uruguay 1 <1%
Belgium 1 <1%
Canada 1 <1%
Unknown 110 91%

Demographic breakdown

Readers by professional status Count As %
Student > Master 26 21%
Student > Ph. D. Student 22 18%
Researcher 19 16%
Student > Bachelor 12 10%
Other 7 6%
Other 20 17%
Unknown 15 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 31%
Environmental Science 28 23%
Engineering 16 13%
Chemistry 5 4%
Biochemistry, Genetics and Molecular Biology 4 3%
Other 12 10%
Unknown 19 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2021.
All research outputs
#7,173,115
of 22,675,759 outputs
Outputs from Frontiers in Microbiology
#7,588
of 24,472 outputs
Outputs of similar age
#67,823
of 244,088 outputs
Outputs of similar age from Frontiers in Microbiology
#85
of 317 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 24,472 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.