↓ Skip to main content

Somatic Populations of PGT135–137 HIV-1-Neutralizing Antibodies Identified by 454 Pyrosequencing and Bioinformatics

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
68 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Somatic Populations of PGT135–137 HIV-1-Neutralizing Antibodies Identified by 454 Pyrosequencing and Bioinformatics
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00315
Pubmed ID
Authors

Jiang Zhu, Sijy O’Dell, Gilad Ofek, Marie Pancera, Xueling Wu, Baoshan Zhang, Zhenhai Zhang, NISC Comparative Sequencing Program, James C. Mullikin, Melissa Simek, Dennis R. Burton, Wayne C. Koff, Lawrence Shapiro, John R. Mascola, Peter D. Kwong

Abstract

Select HIV-1-infected individuals develop sera capable of neutralizing diverse viral strains. The molecular basis of this neutralization is currently being deciphered by the isolation of HIV-1-neutralizing antibodies. In one infected donor, three neutralizing antibodies, PGT135-137, were identified by assessment of neutralization from individually sorted B cells and found to recognize an epitope containing an N-linked glycan at residue 332 on HIV-1 gp120. Here we use next-generation sequencing and bioinformatics methods to interrogate the B cell record of this donor to gain a more complete understanding of the humoral immune response. PGT135-137-gene family specific primers were used to amplify heavy-chain and light-chain variable-domain sequences. Pyrosequencing produced 141,298 heavy-chain sequences of IGHV4-39 origin and 87,229 light-chain sequences of IGKV3-15 origin. A number of heavy and light-chain sequences of ∼90% identity to PGT137, several to PGT136, and none of high identity to PGT135 were identified. After expansion of these sequences to include close phylogenetic relatives, a total of 202 heavy-chain sequences and 72 light-chain sequences were identified. These sequences were clustered into populations of 95% identity comprising 15 for heavy chain and 10 for light chain, and a select sequence from each population was synthesized and reconstituted with a PGT137-partner chain. Reconstituted antibodies showed varied neutralization phenotypes for HIV-1 clade A and D isolates. Sequence diversity of the antibody population represented by these tested sequences was notably higher than observed with a 454 pyrosequencing-control analysis on 10 antibodies of defined sequence, suggesting that this diversity results primarily from somatic maturation. Our results thus provide an example of how pathogens like HIV-1 are opposed by a varied humoral immune response, derived from intrinsic mechanisms of antibody development, and embodied by somatic populations of diverse antibodies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Italy 1 1%
South Africa 1 1%
Unknown 65 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 31%
Researcher 15 22%
Student > Bachelor 5 7%
Professor 4 6%
Other 4 6%
Other 14 21%
Unknown 5 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 38%
Immunology and Microbiology 11 16%
Biochemistry, Genetics and Molecular Biology 10 15%
Medicine and Dentistry 6 9%
Arts and Humanities 3 4%
Other 7 10%
Unknown 5 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2012.
All research outputs
#20,166,700
of 22,678,224 outputs
Outputs from Frontiers in Microbiology
#22,069
of 24,476 outputs
Outputs of similar age
#221,187
of 244,101 outputs
Outputs of similar age from Frontiers in Microbiology
#228
of 317 outputs
Altmetric has tracked 22,678,224 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,476 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.