↓ Skip to main content

Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
174 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00375
Pubmed ID
Authors

Erin M. Bertrand, Andrew E. Allen

Abstract

While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B(12)) and thiamine (B(1)) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B(12) and 20% requiring B(1). The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B(12) and B(1) starvation in eukaryotic phytoplankton. B(12) plays essential roles in amino acid and one-carbon metabolism, while B(1) is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B(12), B(1), and N starvation impacts on osmolyte and antioxidant production, (2) B(12) and B(1) starvation impacts on polyamine biosynthesis, and (3) influence of B(12) and B(1) starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B(12) and B(1) deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 174 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 1%
United States 2 1%
France 2 1%
Unknown 168 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 47 27%
Researcher 28 16%
Student > Master 21 12%
Student > Bachelor 20 11%
Student > Doctoral Student 8 5%
Other 24 14%
Unknown 26 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 72 41%
Environmental Science 28 16%
Biochemistry, Genetics and Molecular Biology 16 9%
Earth and Planetary Sciences 13 7%
Chemistry 5 3%
Other 10 6%
Unknown 30 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2012.
All research outputs
#20,169,675
of 22,681,577 outputs
Outputs from Frontiers in Microbiology
#22,079
of 24,478 outputs
Outputs of similar age
#221,189
of 244,101 outputs
Outputs of similar age from Frontiers in Microbiology
#228
of 317 outputs
Altmetric has tracked 22,681,577 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,478 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.