↓ Skip to main content

Comparative Molecular Microbial Ecology of the Spring Haptophyte Bloom in a Greenland Arctic Oligosaline Lake

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative Molecular Microbial Ecology of the Spring Haptophyte Bloom in a Greenland Arctic Oligosaline Lake
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00415
Pubmed ID
Authors

Susanna Theroux, Yongsong Huang, Linda Amaral-Zettler

Abstract

The Arctic is highly sensitive to increasing global temperatures and is projected to experience dramatic ecological shifts in the next few decades. Oligosaline lakes are common in arctic regions where evaporation surpasses precipitation, however these extreme microbial communities are poorly characterized. Many oligosaline lakes, in contrast to freshwater ones, experience annual blooms of haptophyte algae that generate valuable alkenone biomarker records that can be used for paleoclimate reconstruction. These haptophyte algae are globally important, and globally distributed, aquatic phototrophs yet their presence in microbial molecular surveys is scarce. To target haptophytes in a molecular survey, we compared microbial community structure during two haptophyte bloom events in an arctic oligosaline lake, Lake BrayaSø in southwestern Greenland, using high-throughput pyrotag sequencing. Our comparison of two annual bloom events yielded surprisingly low taxon overlap, only 13% for bacterial and 26% for eukaryotic communities, which indicates significant annual variation in the underlying microbial populations. Both the bacterial and eukaryotic communities strongly resembled high-altitude and high latitude freshwater environments. In spite of high alkenone concentrations in the water column, and corresponding high haptophyte rRNA gene copy numbers, haptophyte pyrotag sequences were not the most abundant eukaryotic tag, suggesting that sequencing biases obscured relative abundance data. With over 170 haptophyte tag sequences, we observed only one haptophyte algal Operational Taxonomic Unit, a prerequisite for accurate paleoclimate reconstruction from the lake sediments. Our study is the first to examine microbial diversity in a Greenland lake using next generation sequencing and the first to target an extreme haptophyte bloom event. Our results provide a context for future explorations of aquatic ecology in the warming arctic.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
France 1 2%
Unknown 44 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 28%
Researcher 10 22%
Student > Bachelor 5 11%
Student > Master 4 9%
Professor > Associate Professor 3 7%
Other 6 13%
Unknown 5 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 41%
Earth and Planetary Sciences 6 13%
Biochemistry, Genetics and Molecular Biology 5 11%
Environmental Science 4 9%
Arts and Humanities 1 2%
Other 2 4%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2017.
All research outputs
#15,208,681
of 22,689,790 outputs
Outputs from Frontiers in Microbiology
#14,890
of 24,495 outputs
Outputs of similar age
#162,889
of 244,142 outputs
Outputs of similar age from Frontiers in Microbiology
#158
of 317 outputs
Altmetric has tracked 22,689,790 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,495 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,142 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.