↓ Skip to main content

Chlorella mirabilis as a Potential Species for Biomass Production in Low-Temperature Environment

Overview of attention for article published in Frontiers in Microbiology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chlorella mirabilis as a Potential Species for Biomass Production in Low-Temperature Environment
Published in
Frontiers in Microbiology, January 2013
DOI 10.3389/fmicb.2013.00097
Pubmed ID
Authors

S. P. Shukla, J. Kvíderová, J. Tříska, J. Elster

Abstract

Successful adaptation/acclimatization to low temperatures in micro-algae is usually connected with production of specific biotechnologically important compounds. In this study, we evaluated the growth characteristics in a micro-scale mass cultivation of the Antarctic soil green alga Chlorella mirabilis under different nitrogen and carbon sources followed by analyses of fatty acid contents. The micro-scale mass cultivation was performed in stable (in-door) and variable (out-door) conditions during winter and/or early spring in the Czech Republic. In the in-door cultivation, the treatments for nitrogen and carbon sources determination included pure Z medium (control, Z), Z medium + 5% glycerol (ZG), Z medium + 5% glycerol + 50 μM KNO3 (ZGN), Z medium + 5% glycerol + 200 μM NH4Cl (ZGA), Z medium + 5% glycerol + 1 mM Na2CO3 (ZNC), Z medium + 5% glycerol + 1 mM Na2CO3 + 200 μM NH4Cl (ZGCA) and Z medium + 5% glycerol + 1 mM Na2CO3 + 50 μM KNO3 (ZGCN) and were performed at 15°C with an irradiance of 75 μmol m(-2) s(-1). During the out-door experiments, the night-day temperature ranged from -6.6 to 17.5°C (daily average 3.1 ± 5.3°C) and irradiance ranged from 0 to 2,300 μmol m(-2) s(-1) (daily average 1,500 ± 1,090 μmol m(-2) s(-1)). Only the Z, ZG, ZGN, and ZGC treatments were used in the out-door cultivation. In the in-door mass cultivation, all nitrogen and carbon sources additions increased the growth rate with the exception of ZGA. When individual sources were considered, only the effect of 5% glycerol addition was significant. On the other hand, the growth rate decreased in the ZG and ZGN treatments in the out-door experiment, probably due to carbon limitation. Fatty acid composition showed increased production of linoleic acid in the glycerol treatments. The studied strain of C. mirabilis is proposed to be a promising source of linoleic acid in low-temperature-mass cultivation biotechnology. This strain is a perspective model organism for biotechnology in low-temperature conditions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Netherlands 1 2%
Unknown 52 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 30%
Researcher 9 17%
Student > Master 7 13%
Student > Bachelor 5 9%
Professor > Associate Professor 2 4%
Other 5 9%
Unknown 10 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 35%
Environmental Science 8 15%
Engineering 4 7%
Biochemistry, Genetics and Molecular Biology 3 6%
Chemistry 2 4%
Other 4 7%
Unknown 14 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2013.
All research outputs
#20,191,579
of 22,708,120 outputs
Outputs from Frontiers in Microbiology
#22,119
of 24,526 outputs
Outputs of similar age
#248,737
of 280,717 outputs
Outputs of similar age from Frontiers in Microbiology
#264
of 407 outputs
Altmetric has tracked 22,708,120 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,526 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,717 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 407 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.