↓ Skip to main content

Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis

Overview of attention for article published in Frontiers in Microbiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis
Published in
Frontiers in Microbiology, January 2013
DOI 10.3389/fmicb.2013.00226
Pubmed ID
Authors

Benoit Barbeau, Jean-Marie Peloponese, Jean-Michel Mesnard

Abstract

The production of antisense transcripts from the 3' long terminal repeat (LTR) in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded human T-lymphotropic virus type 1 (HTLV-1) bZIP (HBZ) factor, we reported that HBZ could interact with CRE-binding protein (CREB) transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5' LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3, and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs). APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T cell leukemia, while HTLV-1 is responsible for the development of the adult T cell leukemia/lymphoma. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Brazil 1 2%
Unknown 39 95%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 29%
Student > Master 8 20%
Researcher 5 12%
Student > Ph. D. Student 5 12%
Professor 2 5%
Other 4 10%
Unknown 5 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 32%
Medicine and Dentistry 9 22%
Biochemistry, Genetics and Molecular Biology 6 15%
Immunology and Microbiology 5 12%
Neuroscience 1 2%
Other 1 2%
Unknown 6 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2013.
All research outputs
#18,342,133
of 22,715,151 outputs
Outputs from Frontiers in Microbiology
#19,107
of 24,551 outputs
Outputs of similar age
#218,043
of 280,748 outputs
Outputs of similar age from Frontiers in Microbiology
#240
of 407 outputs
Altmetric has tracked 22,715,151 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,551 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,748 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 407 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.