↓ Skip to main content

Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

Overview of attention for article published in Frontiers in Microbiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments
Published in
Frontiers in Microbiology, January 2013
DOI 10.3389/fmicb.2013.00388
Pubmed ID
Authors

Jason Benzine, Evgenya Shelobolina, Mai Yia Xiong, David W. Kennedy, James P. McKinley, Xueju Lin, Eric E. Roden

Abstract

Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 28%
Researcher 9 23%
Student > Master 4 10%
Other 3 8%
Professor > Associate Professor 3 8%
Other 6 15%
Unknown 3 8%
Readers by discipline Count As %
Environmental Science 13 33%
Agricultural and Biological Sciences 7 18%
Earth and Planetary Sciences 6 15%
Biochemistry, Genetics and Molecular Biology 3 8%
Immunology and Microbiology 2 5%
Other 0 0%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 December 2013.
All research outputs
#15,288,160
of 22,736,112 outputs
Outputs from Frontiers in Microbiology
#14,997
of 24,598 outputs
Outputs of similar age
#181,584
of 280,808 outputs
Outputs of similar age from Frontiers in Microbiology
#206
of 407 outputs
Altmetric has tracked 22,736,112 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,598 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 407 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.