↓ Skip to main content

Assessing the advantage of morphological changes in Candida albicans: a game theoretical study

Overview of attention for article published in Frontiers in Microbiology, January 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessing the advantage of morphological changes in Candida albicans: a game theoretical study
Published in
Frontiers in Microbiology, January 2014
DOI 10.3389/fmicb.2014.00041
Pubmed ID
Authors

Katarzyna M. Tyc, Clemens Kühn, Duncan Wilson, Edda Klipp

Abstract

A range of attributes determines the virulence of human pathogens. During interactions with their hosts, pathogenic microbes often undergo transitions between distinct stages, and the ability to switch between these can be directly related to the disease process. Understanding the mechanisms and dynamics of these transitions is a key factor in understanding and combating infectious diseases. The human fungal pathogen Candida albicans exhibits different morphotypes at different stages during the course of infection (candidiasis). For example, hyphae are considered to be the invasive form, which causes tissue damage, while yeast cells are predominant in the commensal stage. Here, we described interactions of C. albicans with its human host in a game theoretic model. In the game, players are fungal cells. Each fungal cell can adopt one of the two strategies: to exist as a yeast or hyphal cell. We characterized the ranges of model parameters in which the coexistence of both yeast and hyphal forms is plausible. Stability analysis of the system showed that, in theory, a reduced ability of the host to specifically recognize yeast and hyphal cells can result in bi-stability of the microbial populations' profile. Inspired by the model analysis we reasoned that the types of microbial interactions can change during invasive candidiasis. We found that positive cooperation among fungal cells occurs in mild infections and an enhanced tendency to invade the host is associated with negative cooperation. The model can easily be extended to multi-player systems with direct application to identifying individuals that enhance either positive or negative cooperation. Results of the modeling approach have potential application in developing treatment strategies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Germany 1 2%
Unknown 48 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 30%
Student > Master 12 24%
Student > Bachelor 6 12%
Researcher 5 10%
Student > Doctoral Student 1 2%
Other 4 8%
Unknown 7 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 32%
Medicine and Dentistry 10 20%
Biochemistry, Genetics and Molecular Biology 7 14%
Immunology and Microbiology 5 10%
Veterinary Science and Veterinary Medicine 2 4%
Other 2 4%
Unknown 8 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 February 2014.
All research outputs
#20,219,902
of 22,743,667 outputs
Outputs from Frontiers in Microbiology
#22,199
of 24,605 outputs
Outputs of similar age
#264,758
of 305,223 outputs
Outputs of similar age from Frontiers in Microbiology
#64
of 87 outputs
Altmetric has tracked 22,743,667 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,605 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,223 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.