↓ Skip to main content

Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue

Overview of attention for article published in Frontiers in Microbiology, March 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
wikipedia
5 Wikipedia pages

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue
Published in
Frontiers in Microbiology, March 2014
DOI 10.3389/fmicb.2014.00093
Pubmed ID
Authors

Krithika Venkataraman, Kip E. Guja, Miguel Garcia-Diaz, A. Wali Karzai

Abstract

Decoding of aberrant mRNAs leads to unproductive ribosome stalling and sequestration of components of the translation machinery. Bacteria have evolved three seemingly independent pathways to resolve stalled translation complexes. The trans-translation process, orchestrated by the hybrid transfer-messenger RNA (tmRNA) and its essential protein co-factor, small protein B (SmpB), is the principal translation quality control system for rescuing unproductively stalled ribosomes. Two specialized alternative rescue pathways, coordinated by ArfA and ArfB, have been recently discovered. The SmpB-tmRNA mediated trans-translation pathway, in addition to re-mobilizing stalled translation complexes, co-translationally appends a degradation tag to the associated nascent polypeptides, marking them for proteolysis by various cellular proteases. Another unique feature of trans-translation, not shared by the alternative rescue pathways, is the facility to recruit ribonuclease R (RNase R) for targeted degradation of non-stop mRNAs, thus preventing further futile cycles of translation. The distinct C-terminal lysine-rich (K-rich) domain of RNase R is essential for its recruitment to stalled ribosomes. To gain new insights into the structure and function of RNase R, we investigated its global architecture, the spatial arrangement of its distinct domains, and the identities of key functional residues in its unique K-rich domain. Small-angle X-ray scattering models of RNase R reveal a tri-lobed structure with flexible N- and C-terminal domains, and suggest intimate contacts between the K-rich domain and the catalytic core of the enzyme. Alanine-scanning mutagenesis of the K-rich domain, in the region spanning residues 735 and 750, has uncovered the precise amino acid determinants required for the productive engagement of RNase R on tmRNA-rescued ribosomes. Theses analyses demonstrate that alanine substitution of conserved residues E740 and K741result in profound defects, not only in the recruitment of RNase R to rescued ribosomes but also in the targeted decay of non-stop mRNAs. Additionally, an RNase R variant with alanine substitution at residues K749 and K750 exhibits extensive defects in ribosome enrichment and non-stop mRNA decay. In contrast, alanine substitution of additional conserved residues in this region has no effect on the known functions of RNase R. In vitro RNA degradation assays demonstrate that the consequential substitutions (RNase R(E740A/K741A) and RNase R(K749A/K750A)) do not affect the ability of the enzyme to degrade structured RNAs, indicating that the observed defect is specific to the trans-translation related activities of RNase R. Taken together, these findings shed new light on the global architecture of RNase R and provide new details of how this versatile RNase effectuates non-stop mRNA decay on tmRNA-rescued ribosomes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 26%
Student > Ph. D. Student 8 19%
Student > Master 7 17%
Student > Doctoral Student 3 7%
Other 3 7%
Other 6 14%
Unknown 4 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 40%
Biochemistry, Genetics and Molecular Biology 15 36%
Medicine and Dentistry 3 7%
Social Sciences 1 2%
Engineering 1 2%
Other 0 0%
Unknown 5 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2021.
All research outputs
#2,859,006
of 22,747,498 outputs
Outputs from Frontiers in Microbiology
#2,548
of 24,616 outputs
Outputs of similar age
#29,893
of 220,818 outputs
Outputs of similar age from Frontiers in Microbiology
#10
of 105 outputs
Altmetric has tracked 22,747,498 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 24,616 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 220,818 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 105 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.