↓ Skip to main content

Volatile hydrocarbons inhibit methanogenic crude oil degradation

Overview of attention for article published in Frontiers in Microbiology, April 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Volatile hydrocarbons inhibit methanogenic crude oil degradation
Published in
Frontiers in Microbiology, April 2014
DOI 10.3389/fmicb.2014.00131
Pubmed ID
Authors

Angela Sherry, Russell J. Grant, Carolyn M. Aitken, D. Martin Jones, Ian M. Head, Neil D. Gray

Abstract

Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Germany 1 1%
Canada 1 1%
Brazil 1 1%
Unknown 86 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 28%
Student > Master 14 16%
Researcher 13 14%
Student > Bachelor 8 9%
Other 5 6%
Other 14 16%
Unknown 11 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 27%
Environmental Science 21 23%
Biochemistry, Genetics and Molecular Biology 10 11%
Earth and Planetary Sciences 5 6%
Chemical Engineering 3 3%
Other 7 8%
Unknown 20 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2014.
All research outputs
#18,369,403
of 22,751,628 outputs
Outputs from Frontiers in Microbiology
#19,146
of 24,620 outputs
Outputs of similar age
#163,226
of 225,518 outputs
Outputs of similar age from Frontiers in Microbiology
#105
of 140 outputs
Altmetric has tracked 22,751,628 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,620 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 225,518 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 140 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.