↓ Skip to main content

Localization of aggregating proteins in bacteria depends on the rate of addition

Overview of attention for article published in Frontiers in Microbiology, August 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Localization of aggregating proteins in bacteria depends on the rate of addition
Published in
Frontiers in Microbiology, August 2014
DOI 10.3389/fmicb.2014.00418
Pubmed ID
Authors

Karlton Scheu, Rakinder Gill, Saeed Saberi, Pablo Meyer, Eldon Emberly

Abstract

Many proteins are observed to localize to specific subcellular regions within bacteria. Recent experiments have shown that proteins that have self-interactions that lead them to aggregate tend to localize to the poles. Theoretical modeling of the localization of aggregating protein within bacterial cell geometries shows that aggregates can spontaneously localize to the pole due to nucleoid occlusion. The resulting polar localization, whether it be to a single pole or to both was shown to depend on the rate of protein addition. Motivated by these predictions we selected a set of genes from Escherichia coli, whose protein products have been reported to localize when tagged with green fluorescent protein (GFP), and explored the dynamics of their localization. We induced protein expression from each gene at different rates and found that in all cases unipolar patterning is favored at low rates of expression whereas bipolar is favored at higher rates of expression. Our findings are consistent with the predictions of the model, suggesting that localization may be due to aggregation plus nucleoid occlusion. When we expressed GFP by itself under the same conditions, no localization was observed. These experiments highlight the potential importance of protein aggregation, nucleoid occlusion and rate of protein expression in driving polar localization of functional proteins in bacteria.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 32%
Researcher 9 20%
Student > Master 6 14%
Student > Bachelor 4 9%
Student > Doctoral Student 3 7%
Other 5 11%
Unknown 3 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 39%
Biochemistry, Genetics and Molecular Biology 14 32%
Chemistry 2 5%
Medicine and Dentistry 2 5%
Unspecified 1 2%
Other 2 5%
Unknown 6 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2014.
All research outputs
#14,783,222
of 22,759,618 outputs
Outputs from Frontiers in Microbiology
#13,684
of 24,639 outputs
Outputs of similar age
#126,652
of 230,320 outputs
Outputs of similar age from Frontiers in Microbiology
#95
of 173 outputs
Altmetric has tracked 22,759,618 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,639 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 230,320 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.