↓ Skip to main content

Biogeographic congruency among bacterial communities from terrestrial sulfidic springs

Overview of attention for article published in Frontiers in Microbiology, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biogeographic congruency among bacterial communities from terrestrial sulfidic springs
Published in
Frontiers in Microbiology, September 2014
DOI 10.3389/fmicb.2014.00473
Pubmed ID
Authors

Brendan Headd, Annette S. Engel

Abstract

Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 5%
Germany 1 2%
Portugal 1 2%
Canada 1 2%
India 1 2%
Unknown 37 86%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 26%
Student > Ph. D. Student 11 26%
Student > Doctoral Student 4 9%
Student > Bachelor 4 9%
Student > Master 4 9%
Other 2 5%
Unknown 7 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 40%
Environmental Science 8 19%
Biochemistry, Genetics and Molecular Biology 3 7%
Earth and Planetary Sciences 2 5%
Chemistry 2 5%
Other 3 7%
Unknown 8 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2014.
All research outputs
#16,923,090
of 24,885,505 outputs
Outputs from Frontiers in Microbiology
#17,465
of 28,434 outputs
Outputs of similar age
#144,062
of 244,322 outputs
Outputs of similar age from Frontiers in Microbiology
#106
of 156 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 28,434 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,322 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 156 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.