↓ Skip to main content

Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines

Overview of attention for article published in Frontiers in Microbiology, October 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines
Published in
Frontiers in Microbiology, October 2014
DOI 10.3389/fmicb.2014.00514
Pubmed ID
Authors

Mina John, Silvana Gaudieri

Abstract

Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4(+) and CD8(+) T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of "elite controllers," or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8(+) T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in natural infection, and the challenges these pose for designing effective preventative or therapeutic vaccines.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 2%
Portugal 1 2%
Saudi Arabia 1 2%
Unknown 44 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 23%
Student > Master 8 17%
Student > Bachelor 6 13%
Student > Postgraduate 5 11%
Student > Doctoral Student 4 9%
Other 5 11%
Unknown 8 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 38%
Medicine and Dentistry 9 19%
Immunology and Microbiology 5 11%
Engineering 2 4%
Social Sciences 1 2%
Other 3 6%
Unknown 9 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2014.
All research outputs
#18,380,628
of 22,766,595 outputs
Outputs from Frontiers in Microbiology
#19,195
of 24,666 outputs
Outputs of similar age
#182,716
of 255,754 outputs
Outputs of similar age from Frontiers in Microbiology
#130
of 167 outputs
Altmetric has tracked 22,766,595 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,666 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 255,754 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 167 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.