↓ Skip to main content

Factors that mediate and prevent degradation of the inactive and unstable GudB protein in Bacillus subtilis

Overview of attention for article published in Frontiers in Microbiology, January 2015
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Factors that mediate and prevent degradation of the inactive and unstable GudB protein in Bacillus subtilis
Published in
Frontiers in Microbiology, January 2015
DOI 10.3389/fmicb.2014.00758
Pubmed ID
Authors

Lorena Stannek, Katrin Gunka, Rachel A. Care, Ulf Gerth, Fabian M. Commichau

Abstract

The Gram-positive model bacterium Bacillus subtilis contains two glutamate dehydro genase-encoding genes, rocG and gudB. While the rocG gene encodes the functional GDH, the gudB gene is cryptic (gudB(CR) ) in the laboratory strain 168 due to a perfect 18 bp-long direct repeat that renders the GudB enzyme inactive and unstable. Although constitutively expressed the GudB(CR) protein can hardly be detected in B. subtilis as it is rapidly degraded within stationary growth phase. Its high instability qualifies GudB(CR) as a model substrate for studying protein turnover in B. subtilis. Recently, we have developed a visual screen to monitor the GudB(CR) stability in the cell using a GFP-GudB(CR) fusion. Using fluorescent microscopy we found that the GFP protein is simultaneously degraded together with GudB(CR). This allows us to analyze the stability of GudB(CR) in living cells. By combining the visual screen with a transposon mutagenesis approach we looked for mutants that show an increased fluorescence signal compared to the wild type indicating a stabilized GFP-GudB(CR) fusion. We observed, that disruption of the arginine kinase encoding gene mcsB upon transposon insertion leads to increased amounts of the GFP-GudB(CR) fusion in this mutant. Deletion of the cognate arginine phosphatase YwlE in contrast results in reduced levels of the GFP-GudB(CR) fusion. Recently, it was shown that the kinase McsB is involved in phosphorylation of GudB(CR) on arginine residues. Here we show that selected arginine-lysine point mutations of GudB(CR) exhibit no influence on degradation. The activity of McsB and YwlE, however, are crucial for the activation and inhibition, respectively, of a proteolytic machinery that efficiently degrades the unstable GudB(CR) protein in B. subtilis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 32%
Student > Master 5 26%
Student > Doctoral Student 3 16%
Student > Bachelor 2 11%
Researcher 2 11%
Other 1 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 53%
Biochemistry, Genetics and Molecular Biology 4 21%
Immunology and Microbiology 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Chemistry 1 5%
Other 0 0%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2015.
All research outputs
#17,734,890
of 22,774,233 outputs
Outputs from Frontiers in Microbiology
#17,079
of 24,684 outputs
Outputs of similar age
#241,454
of 352,344 outputs
Outputs of similar age from Frontiers in Microbiology
#187
of 272 outputs
Altmetric has tracked 22,774,233 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,684 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,344 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.