↓ Skip to main content

Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from…

Overview of attention for article published in Frontiers in Microbiology, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors
Published in
Frontiers in Microbiology, January 2015
DOI 10.3389/fmicb.2014.00793
Pubmed ID
Authors

Eunice López-Fuentes, Gonzalo Torres-Tejerizo, Laura Cervantes, Susana Brom

Abstract

Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Bachelor 6 19%
Student > Ph. D. Student 5 16%
Professor > Associate Professor 3 9%
Student > Master 3 9%
Other 5 16%
Unknown 4 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 28%
Agricultural and Biological Sciences 9 28%
Unspecified 1 3%
Environmental Science 1 3%
Veterinary Science and Veterinary Medicine 1 3%
Other 3 9%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 January 2015.
All research outputs
#14,207,134
of 22,775,504 outputs
Outputs from Frontiers in Microbiology
#12,356
of 24,689 outputs
Outputs of similar age
#187,451
of 353,642 outputs
Outputs of similar age from Frontiers in Microbiology
#137
of 277 outputs
Altmetric has tracked 22,775,504 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,689 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,642 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 277 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.