↓ Skip to main content

Identification of metabolism pathways directly regulated by sigma54 factor in Bacillus thuringiensis

Overview of attention for article published in Frontiers in Microbiology, May 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of metabolism pathways directly regulated by sigma54 factor in Bacillus thuringiensis
Published in
Frontiers in Microbiology, May 2015
DOI 10.3389/fmicb.2015.00407
Pubmed ID
Authors

Qi Peng, Guannan Wang, Guiming Liu, Jie Zhang, Fuping Song

Abstract

Sigma(54) (σ(54)) regulates nitrogen and carbon utilization in bacteria. Promoters that are σ(54)-dependent are highly conserved and contain short sequences located at the -24 and -12 positions upstream of the transcription initiation site. σ(54) requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs) to activate gene transcription. We show that σ(54) regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ(54) (ΔsigL). A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ(54) regulon (stationary phase) was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved -12/-24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ(54)-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated nine σ(54)-dependent promoters. The metabolic pathways activated by σ(54) in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ(54) regulon provides a better understanding of the physiological roles of σ factors in bacteria.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 26%
Researcher 5 19%
Student > Master 5 19%
Student > Doctoral Student 4 15%
Student > Bachelor 3 11%
Other 1 4%
Unknown 2 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 41%
Biochemistry, Genetics and Molecular Biology 8 30%
Environmental Science 2 7%
Engineering 2 7%
Social Sciences 1 4%
Other 1 4%
Unknown 2 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2015.
All research outputs
#20,271,607
of 22,803,211 outputs
Outputs from Frontiers in Microbiology
#22,349
of 24,751 outputs
Outputs of similar age
#222,159
of 264,485 outputs
Outputs of similar age from Frontiers in Microbiology
#315
of 381 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,751 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,485 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 381 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.