↓ Skip to main content

Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum

Overview of attention for article published in Frontiers in Microbiology, June 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum
Published in
Frontiers in Microbiology, June 2015
DOI 10.3389/fmicb.2015.00555
Pubmed ID
Authors

Xinguo Shi, Ling Li, Chentao Guo, Xin Lin, Meizhen Li, Senjie Lin

Abstract

The proton pump rhodopsin is widely found in marine bacteria and archaea, where it functions to capture light energy and convert it to ATP. While found in several lineages of dinoflagellates, this gene has not been studied in Prorocentrales species and whether it functionally tunes to light spectra and intensities as in bacteria remains unclear. Here we identified and characterized this gene in the bloom-forming Prorocentrum donghaiense. It is a 7-helix transmembrane polypeptide containing conserved domains and critical amino acid residues of PPR. This gene is phylogenetically affiliated to the xanthorhodopsin clade, but seems to have a distinct evolutionary origin. Quantitative reverse transcription PCR showed that in regular cultures, the transcript abundance of the gene exhibited a clear diel pattern, high abundance in the light period and low in the dark. The same diel pattern was observed for protein abundance with a Western blot using specific antiserum. The rhythm was dampened when the cultures were shifted to continuous dark or light condition, suggesting that this gene is not under circadian clock control. Rhodopsin transcript and protein abundances varied with light intensity, both being highest at a moderate illumination level. Furthermore, the expression of this gene responded to different light spectra, with slightly higher transcript abundance under green than blue light, and lowest abundance under red light. Transformed Escherichia coli over-expressing this rhodopsin gene also exhibited an absorption maximum in the blue-green region with slightly higher absorption in the green. These rhodopsin-promoting light conditions are similar to the relatively turbid marine habitat where the species forms blooms, suggesting that this gene may function to compensate for the light-limited photosynthesis in the dim environment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 24%
Researcher 7 15%
Student > Bachelor 5 11%
Student > Master 4 9%
Professor 3 7%
Other 5 11%
Unknown 11 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 28%
Biochemistry, Genetics and Molecular Biology 12 26%
Environmental Science 4 9%
Neuroscience 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 2 4%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2015.
All research outputs
#20,273,512
of 22,805,349 outputs
Outputs from Frontiers in Microbiology
#22,353
of 24,755 outputs
Outputs of similar age
#223,662
of 267,785 outputs
Outputs of similar age from Frontiers in Microbiology
#317
of 390 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,755 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,785 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 390 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.