↓ Skip to main content

Impact of different water activities (aw) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores

Overview of attention for article published in Frontiers in Microbiology, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of different water activities (aw) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores
Published in
Frontiers in Microbiology, July 2015
DOI 10.3389/fmicb.2015.00689
Pubmed ID
Authors

Robert Sevenich, Kai Reineke, Philipp Hecht, Antje Fröhling, Cornelia Rauh, Oliver Schlüter, Dietrich Knorr

Abstract

Much research has been conducted to comprehend the mechanisms of high pressure (HP) inactivation of spores in aqueous systems but for food model systems these information are scarce. In these systems spores can interact with ingredients which then could possibly lead to retarded or reduced inactivation, which can cause a problem for the sterilization process. The protective mechanism of a reduced a w-value is still unclear. HP processing might prove valuable to overcome protective effects of solutes and achieve shorter process times for sterilization under HP. To gain insight into the underlying mechanisms five a w-values (0.9, 0.92, 0.94, 0.96, 1) were adjusted with two different solutes (NaCl, sucrose). Solutions were inoculated with spores of Bacillus amyloliquefaciens and treated at 105, 110, and 115°C at 600 MPa. Further a thermal inactivation was conducted at the same temperatures for a comparison with the HP data. Afterward, the influence of HP high temperature treatment on the inactivation, the dipicolinic acid (DPA)-release and membrane constitution was assessed by plate count, HPLC and flow cytometry (FCM). The results show that during HP treatments sucrose and salt both have a protective effect, in which the influence of sucrose on the retarded inactivation is higher. The threshold water activities (a w), which is 0.94, here salt and sucrose have a significant influence on the inactivation. The comparison of thermal (105-115°C) and HP and high temperature (600 MPa, 105-115°C) treated samples showed that the time needed to achieve a 4-5 log10 inactivation is reduced from 45 (a w = 1) to 75 (a w = 0.9) min at 105°C to 3 (a w = 1) to 15 (a w = 0.9) minutes at 600 MPa and 105°C. The release of DPA is the rate limiting step of the inactivation and therefore monitoring the release is of great interest. The DPA-release is slowed down in high concentrated solutions (e.g., sucrose, salt) in comparison to a w 1. Since there is a difference in the way the solutes protect the spore it could be seen as an inner spore membrane effect. Maybe as shown for vegetative microorganism the solutes can interact with membranes, e.g., the inner spore membrane. Flow cytometry (FCM) measurement data show a similar trend.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 67 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Researcher 10 15%
Student > Bachelor 8 12%
Student > Master 8 12%
Professor 3 4%
Other 6 9%
Unknown 20 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 35%
Engineering 5 7%
Chemistry 4 6%
Biochemistry, Genetics and Molecular Biology 3 4%
Chemical Engineering 2 3%
Other 5 7%
Unknown 25 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2015.
All research outputs
#20,282,766
of 22,816,807 outputs
Outputs from Frontiers in Microbiology
#22,373
of 24,773 outputs
Outputs of similar age
#218,921
of 262,341 outputs
Outputs of similar age from Frontiers in Microbiology
#285
of 348 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,773 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,341 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 348 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.