↓ Skip to main content

Co2+-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn2+ and Co2+ on the expression of the virulence genes psaBCA, pcpA, and prtA

Overview of attention for article published in Frontiers in Microbiology, July 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Co2+-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn2+ and Co2+ on the expression of the virulence genes psaBCA, pcpA, and prtA
Published in
Frontiers in Microbiology, July 2015
DOI 10.3389/fmicb.2015.00748
Pubmed ID
Authors

Irfan Manzoor, Sulman Shafeeq, Tomas G. Kloosterman, Oscar P. Kuipers

Abstract

Manganese (Mn(2+))-, zinc (Zn(2+))- and copper (Cu(2+)) play significant roles in transcriptional gene regulation, physiology, and virulence of Streptococcus pneumoniae. So far, the effect of the important transition metal ion cobalt (Co(2+)) on gene expression of S. pneumoniae has not yet been explored. Here, we study the impact of Co(2+) stress on the transcriptome of S. pneumoniae strain D39. BLAST searches revealed that the genome of S. pneumoniae encodes a putative Co(2+)-transport operon (cbi operon), the expression of which we show here to be induced by a high Co(2+) concentration. Furthermore, we found that Co(2+), as has been shown previously for Zn(2+), can cause derepression of the genes of the PsaR virulence regulon, encoding the Mn(2+)-uptake system PsaBCA, the choline binding protein PcpA and the cell-wall associated serine protease PrtA. Interestingly, although Mn(2+) represses expression of the PsaR regulon and Co(2+) leads to derepression, both metal ions stimulate interaction of PsaR with its target promoters. These data will be discussed in the light of previous studies on similar metal-responsive transcriptional regulators.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 19%
Student > Bachelor 4 19%
Student > Ph. D. Student 4 19%
Student > Master 3 14%
Student > Doctoral Student 1 5%
Other 4 19%
Unknown 1 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 38%
Biochemistry, Genetics and Molecular Biology 7 33%
Immunology and Microbiology 3 14%
Medicine and Dentistry 2 10%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2015.
All research outputs
#7,218,684
of 22,816,807 outputs
Outputs from Frontiers in Microbiology
#7,658
of 24,773 outputs
Outputs of similar age
#84,912
of 263,419 outputs
Outputs of similar age from Frontiers in Microbiology
#109
of 352 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 24,773 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,419 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 352 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.