↓ Skip to main content

Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis

Overview of attention for article published in Frontiers in Microbiology, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis
Published in
Frontiers in Microbiology, September 2015
DOI 10.3389/fmicb.2015.00908
Pubmed ID
Authors

Cao Zheng, Yang Ma, Xun Wang, Yuqun Xie, Maria K. Ali, Jin He

Abstract

Cyclic di-AMP (c-di-AMP) is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In the genus Bacillus, the intracellular level and turnover of c-di-AMP are mainly regulated by three diadenylate cyclases (DACs), including DisA, CdaA and CdaS, and two c-di-AMP-specific phosphodiesterases (GdpP and PgpH). In this study, we demonstrated that CdaS protein from B. thuringiensis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain is essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σ(H) and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σ(G). Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in the genus Bacillus.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Student > Bachelor 6 15%
Student > Master 5 13%
Student > Doctoral Student 5 13%
Student > Postgraduate 3 8%
Other 4 10%
Unknown 9 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 40%
Agricultural and Biological Sciences 9 23%
Environmental Science 2 5%
Immunology and Microbiology 2 5%
Chemistry 1 3%
Other 0 0%
Unknown 10 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#20,293,238
of 22,829,683 outputs
Outputs from Frontiers in Microbiology
#22,401
of 24,800 outputs
Outputs of similar age
#225,525
of 268,591 outputs
Outputs of similar age from Frontiers in Microbiology
#336
of 420 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,800 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,591 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 420 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.