↓ Skip to main content

Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China

Overview of attention for article published in Frontiers in Microbiology, October 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (56th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
100 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China
Published in
Frontiers in Microbiology, October 2015
DOI 10.3389/fmicb.2015.01100
Pubmed ID
Authors

Derong Dong, Dayang Zou, Hui Liu, Zhan Yang, Simo Huang, Ningwei Liu, Xiaoming He, Wei Liu, Liuyu Huang

Abstract

Pseudomonas aeruginosa is a major opportunistic pathogen in hospital-acquired infections and exhibits increasing antibiotic resistance. A rapid and sensitive molecular method for its detection in clinical samples is needed to guide therapeutic treatment and to control P. aeruginosa outbreaks. In this study, we established a polymerase spiral reaction (PSR) method for rapid detection of P. aeruginosa by targeting the toxA gene, which regulates exotoxin A synthesis. Real-time turbidity monitoring and a chromogenic visualization using hydroxynaphthol blue were used to assess the reaction. All 17 non- P. aeruginosa strains tested negative, indicating the high specificity of the PSR primers. The detection limit was 2.3 pg/μl within 60 min at isothermal temperature (65°C), 10-fold more sensitive than conventional PCR. Then, the PSR assay was applied to a clinical surveillance of P. aeruginosa in three top hospitals in Beijing, China. Of the 130 sputum samples collected from ICU patients with suspected multi-resistant infections, 37 P. aeruginosa isolates were identified from the positive samples. All clinical strains belonged to 10 different P. aeruginosa multilocus sequence typing groups and exhibited high resistance to carbapenems, cephalosporins, and aminoglycosides. Interestingly, of the 33 imipenem-resistant isolates, 30 (90.9%) had lost the outer membrane porin oprD gene. Moreover, isolate SY-95, containing multiple antibiotic resistance genes, possessed the ability to hydrolyze all antibiotics used in clinic and was susceptible only to polymyxin B. Our study showed the high level of antibiotic resistance and co-occurrence of resistance genes in the clinical strains, indicating a rapid and continuing evolution of P. aeruginosa. In conclusion, we developed a P. aeruginosa PSR assay, which could be a useful tool for clinical screening, especially in case of poor resources, or for point-of-care testing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 100 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 1%
Unknown 99 99%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 15%
Student > Ph. D. Student 11 11%
Researcher 11 11%
Student > Master 9 9%
Professor > Associate Professor 5 5%
Other 19 19%
Unknown 30 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 19%
Agricultural and Biological Sciences 16 16%
Medicine and Dentistry 8 8%
Immunology and Microbiology 7 7%
Nursing and Health Professions 3 3%
Other 15 15%
Unknown 32 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 October 2015.
All research outputs
#12,643,807
of 22,829,683 outputs
Outputs from Frontiers in Microbiology
#8,578
of 24,800 outputs
Outputs of similar age
#119,325
of 277,991 outputs
Outputs of similar age from Frontiers in Microbiology
#134
of 433 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,800 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,991 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.
We're also able to compare this research output to 433 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.