↓ Skip to main content

In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends

Overview of attention for article published in Frontiers in Microbiology, December 2015
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends
Published in
Frontiers in Microbiology, December 2015
DOI 10.3389/fmicb.2015.01329
Pubmed ID
Authors

Sara Fondevilla, Nicolas Krezdorn, Björn Rotter, Guenter Kahl, Peter Winter

Abstract

The most important foliar diseases in legumes worldwide are ascochyta blights. Up to now, in the Ascochyta-legume pathosystem most studies focused on the identification of resistance genes in the host, while very little is known about the pathogenicity factors of the fungal pathogen. Moreover, available data were often obtained from fungi growing under artificial conditions. Therefore, in this study we aimed at the identification of the pathogenicity factors of Ascochyta rabiei, causing ascochyta blight in chickpea. To identify potential fungal pathogenicity factors, we employed RNA-seq and Massive Analysis of cDNA Ends (MACE) to produce comprehensive expression profiles of A. rabiei genes isolated either from the fungus growing in absence of its host or from fungi infecting chickpea leaves. We further provide a comprehensive de novo assembly of the A. rabiei transcriptome comprising 22,725 contigs with an average length of 1178 bp. Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins. MACE identified 596 transcripts that were up-regulated during infection. An analysis of these genes identified a collection of candidate pathogenicity factors and unraveled the pathogen's strategy for infecting its host.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 22%
Student > Ph. D. Student 11 20%
Student > Master 7 13%
Student > Doctoral Student 5 9%
Student > Bachelor 5 9%
Other 4 7%
Unknown 11 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 53%
Biochemistry, Genetics and Molecular Biology 9 16%
Computer Science 2 4%
Engineering 2 4%
Medicine and Dentistry 1 2%
Other 1 2%
Unknown 11 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2015.
All research outputs
#17,778,101
of 22,834,308 outputs
Outputs from Frontiers in Microbiology
#17,186
of 24,813 outputs
Outputs of similar age
#263,325
of 387,568 outputs
Outputs of similar age from Frontiers in Microbiology
#274
of 410 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,813 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,568 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 410 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.