↓ Skip to main content

Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime

Overview of attention for article published in Frontiers in Microbiology, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

policy
1 policy source
twitter
5 X users
patent
1 patent

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime
Published in
Frontiers in Microbiology, March 2016
DOI 10.3389/fmicb.2016.00373
Pubmed ID
Authors

John B. Readman, George Dickson, Nick G. Coldham

Abstract

Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson-Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25-mer phosphorodiamidate morpholino oligomer (PMO) and a 13-mer polyamide (peptide) nucleic acid (PNA) were designed to target mRNA (positions -4 to +21, and -17 to -5, respectively) close to the translational initiation site of the extended-spectrum β-lactamase resistance genes of CTX-M group 1. These antisense oligonucleotides were found to inhibit β-lactamase activity by up to 96% in a cell-free translation-transcription coupled system using an expression vector carrying a bla CTX-M-15 gene cloned from a clinical isolate. Despite evidence for up-regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime (CTX) in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0-40 nM). The PMO and PNA were covalently bound to the cell penetrating peptide (CPP; (KFF)3K) and both significantly (P < 0.05) increased sensitivity to CTX in a dose dependent manner (0-40 nM) in field and clinical isolates harboring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine-Dalgarno region of bla CTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 6%
Unknown 33 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 17%
Student > Bachelor 4 11%
Researcher 4 11%
Student > Doctoral Student 3 9%
Student > Master 3 9%
Other 6 17%
Unknown 9 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 17%
Immunology and Microbiology 5 14%
Agricultural and Biological Sciences 4 11%
Unspecified 2 6%
Medicine and Dentistry 2 6%
Other 5 14%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2020.
All research outputs
#3,698,829
of 22,858,915 outputs
Outputs from Frontiers in Microbiology
#3,514
of 24,866 outputs
Outputs of similar age
#59,258
of 300,491 outputs
Outputs of similar age from Frontiers in Microbiology
#119
of 555 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 24,866 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,491 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 555 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.