↓ Skip to main content

Siderophore-Mediated Iron Dissolution from Nontronites Is Controlled by Mineral Cristallochemistry

Overview of attention for article published in Frontiers in Microbiology, March 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Siderophore-Mediated Iron Dissolution from Nontronites Is Controlled by Mineral Cristallochemistry
Published in
Frontiers in Microbiology, March 2016
DOI 10.3389/fmicb.2016.00423
Pubmed ID
Authors

Damien Parrello, Asfaw Zegeye, Christian Mustin, Patrick Billard

Abstract

Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III) and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III) from two iron-bearing colloidal nontronites (NAu-1 and NAu-2), comparing differences in bioavailability related with site occupancy and distribution of Fe(III) in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilize Fe(III) from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilize Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of NAu-2 rather than NAu-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron sites, governs the solubilisation process. Furthermore, we also revealed that P. aeruginosa could acquire iron when in direct contact with mineral particles in a siderophore-independent manner.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Student > Doctoral Student 5 14%
Researcher 5 14%
Student > Master 4 11%
Other 3 8%
Other 4 11%
Unknown 7 19%
Readers by discipline Count As %
Environmental Science 10 27%
Agricultural and Biological Sciences 5 14%
Biochemistry, Genetics and Molecular Biology 3 8%
Immunology and Microbiology 3 8%
Earth and Planetary Sciences 3 8%
Other 5 14%
Unknown 8 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2018.
All research outputs
#6,349,331
of 22,856,968 outputs
Outputs from Frontiers in Microbiology
#6,398
of 24,866 outputs
Outputs of similar age
#91,179
of 301,000 outputs
Outputs of similar age from Frontiers in Microbiology
#177
of 545 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 24,866 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,000 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 545 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.