↓ Skip to main content

K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer

Overview of attention for article published in Frontiers in Microbiology, April 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer
Published in
Frontiers in Microbiology, April 2016
DOI 10.3389/fmicb.2016.00530
Pubmed ID
Authors

Dewu Ding, Ling Li, Chuanjun Shu, Xiao Sun

Abstract

Shewanella oneidensis MR-1 is capable of extracellular electron transfer (EET) and hence has attracted considerable attention. The EET pathways mainly consist of c-type cytochromes, along with some other proteins involved in electron transfer processes. By whole genome study and protein interactions inquisition, we constructed a large-scale electron transfer network containing 2276 interactions among 454 electron transfer related proteins in S. oneidensis MR-1. Using the k-shell decomposition method, we identified and analyzed distinct parts of the electron transfer network. We found that there was a negative correlation between the k s (k-shell values) and the average DR_100 (disordered regions per 100 amino acids) in every shell, which suggested that disordered regions of proteins played an important role during the formation and extension of the electron transfer network. Furthermore, proteins in the top three shells of the network are mainly located in the cytoplasm and inner membrane; these proteins can be responsible for transfer of electrons into the quinone pool in a wide variety of environmental conditions. In most of the other shells, proteins are broadly located throughout the five cellular compartments (cytoplasm, inner membrane, periplasm, outer membrane, and extracellular), which ensures the important EET ability of S. oneidensis MR-1. Specifically, the fourth shell was responsible for EET and the c-type cytochromes in the remaining shells of the electron transfer network were involved in aiding EET. Taken together, these results show that there are distinct functional parts in the electron transfer network of S. oneidensis MR-1, and the EET processes could achieve high efficiency through cooperation through such an electron transfer network.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 33%
Researcher 3 33%
Professor 1 11%
Student > Master 1 11%
Other 1 11%
Other 0 0%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 44%
Biochemistry, Genetics and Molecular Biology 2 22%
Physics and Astronomy 1 11%
Earth and Planetary Sciences 1 11%
Chemistry 1 11%
Other 0 0%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2016.
All research outputs
#18,453,763
of 22,865,319 outputs
Outputs from Frontiers in Microbiology
#19,370
of 24,875 outputs
Outputs of similar age
#219,127
of 299,364 outputs
Outputs of similar age from Frontiers in Microbiology
#407
of 555 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,875 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,364 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 555 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.