↓ Skip to main content

Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis

Overview of attention for article published in Frontiers in Microbiology, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis
Published in
Frontiers in Microbiology, May 2016
DOI 10.3389/fmicb.2016.00664
Pubmed ID
Authors

Chun-Hao Jiang, Zhi-Hang Fan, Ping Xie, Jian-Hua Guo

Abstract

Non-host resistance (NHR) is a broad-spectrum plant defense. Upon colonizing on the surface on the root or leaves of non-host species, pathogens initial encounter preform and induce defense response in plant, such as induced hypersensitive response, PAMPs triggered immunity (PTI), and effector triggered immunity (ETI). The ability of plants to develop an induced systemic response (ISR) in reaction to the colonization by non-pathogenic rhizobacterium depends on interactions between host plants and the colonizing rhizobacterium, and the ISR also can be defined as a NHR. However, how the colonization signal is and how systemic resistance to pathogens is developed is still unclear. In this study, we demonstrated that the extracellular polysaccharides (EPSs) of Bacillus cereus AR156 could act as novel microbe-associated molecular patterns (MAMPs) and function in the early perception status of the ISR of B. cereus AR156. The results revealed that B. cereus AR156 EPS could induce systemic resistance to Pst DC3000 in Arabidopsis. Cellular defense response markers such as hydrogen peroxide accumulation, callose deposition, and defense-associated enzyme were induced upon challenge inoculation in the leaves primed by EPS. Moreover, the defense-related genes PR1, PR2, and PR5 and mitogen-activated kinases (MAPK) cascade marker gene MPK6 were concurrently expressed in the leaves of EPS-treated plants and induced higher resistance to Pst DC3000 in Col-0 than that in the jar1 or etr1 mutants. The protection was absent in the NahG transgenic plants and npr1 mutant, suggesting an activation of the salicylic acid (SA)- and the MAPK-dependent signaling pathways with NPR1-dependent by B. cereus AR156 EPS. In conclusion, B. cereus AR156 EPS play an important role in MAMP perception during the process of rhizobacteria-triggered NHR. This study is the first to illustrate how AR156 induces systemic resistance to Pst DC3000 in Arabidopsis. It also provides the first explanation of how plants perceive colonization of non-pathogenic bacteria and how rhizobacteria trigger ISR to plant pathogens.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 23%
Researcher 7 18%
Student > Master 5 13%
Professor > Associate Professor 2 5%
Student > Bachelor 1 3%
Other 5 13%
Unknown 11 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 40%
Immunology and Microbiology 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Arts and Humanities 1 3%
Unspecified 1 3%
Other 2 5%
Unknown 15 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#14,853,520
of 22,875,477 outputs
Outputs from Frontiers in Microbiology
#13,851
of 24,898 outputs
Outputs of similar age
#171,981
of 301,837 outputs
Outputs of similar age from Frontiers in Microbiology
#341
of 583 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,898 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,837 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 583 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.