↓ Skip to main content

Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment

Overview of attention for article published in Frontiers in Microbiology, May 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment
Published in
Frontiers in Microbiology, May 2016
DOI 10.3389/fmicb.2016.00774
Pubmed ID
Authors

Katherine S. Dawson, Silvan Scheller, Jesse G. Dillon, Victoria J. Orphan

Abstract

Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with (13)C-acetate, (15)N-ammonium, and (33)S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope ((13)C/(12)C, (15)N/(14)N, and (33)S/(32)S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Canada 1 2%
Unknown 63 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Researcher 10 15%
Student > Bachelor 8 12%
Other 6 9%
Student > Master 5 8%
Other 10 15%
Unknown 12 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 23%
Environmental Science 10 15%
Biochemistry, Genetics and Molecular Biology 8 12%
Earth and Planetary Sciences 6 9%
Engineering 4 6%
Other 10 15%
Unknown 12 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2016.
All research outputs
#19,657,679
of 24,176,645 outputs
Outputs from Frontiers in Microbiology
#21,462
of 27,277 outputs
Outputs of similar age
#259,986
of 342,720 outputs
Outputs of similar age from Frontiers in Microbiology
#415
of 562 outputs
Altmetric has tracked 24,176,645 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 27,277 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,720 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 562 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.