↓ Skip to main content

Development of Genetic Tools for the Manipulation of the Planctomycetes

Overview of attention for article published in Frontiers in Microbiology, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of Genetic Tools for the Manipulation of the Planctomycetes
Published in
Frontiers in Microbiology, June 2016
DOI 10.3389/fmicb.2016.00914
Pubmed ID
Authors

Elena Rivas-Marín, Inés Canosa, Eduardo Santero, Damien P. Devos

Abstract

Bacteria belonging to the Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) superphylum are of interest for biotechnology, evolutionary cell biology, ecology, and human health. Some PVC species lack a number of typical bacterial features while others possess characteristics that are usually more associated to eukaryotes or archaea. For example, the Planctomycetes phylum is atypical for the absence of the FtsZ protein and for the presence of a developed endomembrane system. Studies of the cellular and molecular biology of these infrequent characteristics are currently limited due to the lack of genetic tools for most of the species. So far, genetic manipulation in Planctomycetes has been described in Planctopirus limnophila only. Here, we show a simple approach that allows mutagenesis by homologous recombination in three different planctomycetes species (i.e., Gemmata obscuriglobus, Gimesia maris, and Blastopirellula marina), in addition to P. limnophila, thus extending the repertoire of genetically modifiable organisms in this superphylum. Although the Planctomycetes show high resistance to most antibiotics, we have used kanamycin resistance genes in G. obscuriglobus, P. limnophila, and G. maris, and tetracycline resistance genes in B. marina, as markers for mutant selection. In all cases, plasmids were introduced in the strains by mating or electroporation, and the genetic modification was verified by Southern Blotting analysis. In addition, we show that the green fluorescent protein (gfp) is expressed in all four backgrounds from an Escherichia coli promoter. The genetic manipulation achievement in four phylogenetically diverse planctomycetes will enable molecular studies in these strains, and opens the door to developing genetic approaches not only in other planctomycetes but also other species of the superphylum, such as the Lentisphaerae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 22%
Student > Bachelor 10 17%
Researcher 9 15%
Student > Ph. D. Student 9 15%
Other 3 5%
Other 4 7%
Unknown 12 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 30%
Agricultural and Biological Sciences 14 23%
Immunology and Microbiology 5 8%
Computer Science 1 2%
Nursing and Health Professions 1 2%
Other 5 8%
Unknown 16 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2016.
All research outputs
#13,983,915
of 22,877,793 outputs
Outputs from Frontiers in Microbiology
#11,455
of 24,901 outputs
Outputs of similar age
#181,898
of 326,206 outputs
Outputs of similar age from Frontiers in Microbiology
#273
of 525 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,901 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,206 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 525 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.