↓ Skip to main content

Degraded Land Restoration in Reinstating CH4 Sink

Overview of attention for article published in Frontiers in Microbiology, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
9 X users
facebook
2 Facebook pages

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Degraded Land Restoration in Reinstating CH4 Sink
Published in
Frontiers in Microbiology, June 2016
DOI 10.3389/fmicb.2016.00923
Pubmed ID
Authors

Jay Shankar Singh, Vijai K. Gupta

Abstract

Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 24%
Student > Master 5 17%
Student > Ph. D. Student 4 14%
Other 3 10%
Professor > Associate Professor 2 7%
Other 5 17%
Unknown 3 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 48%
Environmental Science 5 17%
Business, Management and Accounting 1 3%
Unspecified 1 3%
Social Sciences 1 3%
Other 1 3%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2021.
All research outputs
#4,939,028
of 23,764,938 outputs
Outputs from Frontiers in Microbiology
#5,039
of 26,387 outputs
Outputs of similar age
#85,746
of 355,886 outputs
Outputs of similar age from Frontiers in Microbiology
#159
of 525 outputs
Altmetric has tracked 23,764,938 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 26,387 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,886 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 525 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.