↓ Skip to main content

NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120

Overview of attention for article published in Frontiers in Microbiology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120
Published in
Frontiers in Microbiology, August 2016
DOI 10.3389/fmicb.2016.01283
Pubmed ID
Authors

Ana M. Sánchez-Riego, Alejandro Mata-Cabana, Carla V. Galmozzi, Francisco J. Florencio

Abstract

NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx) as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however, nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (ΔntrC), apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species) in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Researcher 6 19%
Student > Doctoral Student 4 13%
Student > Master 4 13%
Professor 2 6%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 45%
Biochemistry, Genetics and Molecular Biology 7 23%
Computer Science 1 3%
Immunology and Microbiology 1 3%
Social Sciences 1 3%
Other 2 6%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2016.
All research outputs
#13,986,547
of 22,883,326 outputs
Outputs from Frontiers in Microbiology
#11,454
of 24,918 outputs
Outputs of similar age
#191,694
of 343,111 outputs
Outputs of similar age from Frontiers in Microbiology
#218
of 424 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,918 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 424 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.