↓ Skip to main content

Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence

Overview of attention for article published in Frontiers in Microbiology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Readers on

mendeley
94 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence
Published in
Frontiers in Microbiology, August 2016
DOI 10.3389/fmicb.2016.01346
Pubmed ID
Authors

Peicheng Du, Charles D. Sohaskey, Lanbo Shi

Abstract

Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 94 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 20%
Student > Bachelor 13 14%
Researcher 13 14%
Student > Master 10 11%
Student > Doctoral Student 5 5%
Other 11 12%
Unknown 23 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 31 33%
Agricultural and Biological Sciences 17 18%
Immunology and Microbiology 14 15%
Engineering 3 3%
Medicine and Dentistry 2 2%
Other 6 6%
Unknown 21 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2016.
All research outputs
#14,861,191
of 22,888,307 outputs
Outputs from Frontiers in Microbiology
#13,859
of 24,933 outputs
Outputs of similar age
#205,457
of 337,470 outputs
Outputs of similar age from Frontiers in Microbiology
#237
of 423 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,933 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,470 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 423 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.