↓ Skip to main content

Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

Overview of attention for article published in Frontiers in Microbiology, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
13 X users
facebook
1 Facebook page

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea
Published in
Frontiers in Microbiology, August 2016
DOI 10.3389/fmicb.2016.01375
Pubmed ID
Authors

Stefan Braun, Yuki Morono, Sten Littmann, Marcel Kuypers, Hüsnü Aslan, Mingdong Dong, Bo B. Jørgensen, Bente Aa. Lomstein

Abstract

The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm(3). The cell-specific carbon content was 19-31 fg C cell(-1), which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm(-3), suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Canada 1 2%
Unknown 55 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 26%
Student > Ph. D. Student 9 16%
Student > Master 6 10%
Professor 5 9%
Student > Bachelor 4 7%
Other 12 21%
Unknown 7 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 22%
Earth and Planetary Sciences 10 17%
Biochemistry, Genetics and Molecular Biology 7 12%
Environmental Science 7 12%
Physics and Astronomy 3 5%
Other 6 10%
Unknown 12 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2022.
All research outputs
#4,166,928
of 22,884,315 outputs
Outputs from Frontiers in Microbiology
#4,229
of 24,923 outputs
Outputs of similar age
#70,966
of 337,459 outputs
Outputs of similar age from Frontiers in Microbiology
#110
of 423 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 24,923 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,459 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 423 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.