↓ Skip to main content

Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis

Overview of attention for article published in Frontiers in Microbiology, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
100 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis
Published in
Frontiers in Microbiology, October 2016
DOI 10.3389/fmicb.2016.01572
Pubmed ID
Authors

Elisete P. Rodrigues, Cleiton de Paula Soares, Patrícia G. Galvão, Eddie L. Imada, Jean L. Simões-Araújo, Luc F. M. Rouws, André L. M. de Oliveira, Márcia S. Vidal, José I. Baldani

Abstract

Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5(T) strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5(T). In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5(T). In conclusion, our study demonstrated that G. diazotrophicus PAL5(T) produces IAA via the IPyA pathway in cultures supplemented with tryptophan and provides evidence for the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA. Furthermore, we showed that the mutant strains with reduction in IAA biosynthesis ability, in consequence of the lower transcription levels of genes of the lao cluster, had remarkable effects on development of rice roots.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 100 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 1%
Unknown 99 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 18 18%
Student > Ph. D. Student 17 17%
Student > Bachelor 10 10%
Researcher 9 9%
Student > Doctoral Student 5 5%
Other 12 12%
Unknown 29 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 41 41%
Biochemistry, Genetics and Molecular Biology 8 8%
Environmental Science 5 5%
Unspecified 3 3%
Chemical Engineering 2 2%
Other 5 5%
Unknown 36 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 February 2023.
All research outputs
#15,020,568
of 24,291,750 outputs
Outputs from Frontiers in Microbiology
#12,632
of 27,462 outputs
Outputs of similar age
#182,630
of 325,207 outputs
Outputs of similar age from Frontiers in Microbiology
#218
of 433 outputs
Altmetric has tracked 24,291,750 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 27,462 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,207 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 433 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.