↓ Skip to main content

The Role of Hydrophobicity and Surface Receptors at Hyphae of Lyophyllum sp. Strain Karsten in the Interaction with Burkholderia terrae BS001 – Implications for Interactions in Soil

Overview of attention for article published in Frontiers in Microbiology, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Role of Hydrophobicity and Surface Receptors at Hyphae of Lyophyllum sp. Strain Karsten in the Interaction with Burkholderia terrae BS001 – Implications for Interactions in Soil
Published in
Frontiers in Microbiology, October 2016
DOI 10.3389/fmicb.2016.01689
Pubmed ID
Authors

Taissa Vila, Rashid Nazir, Sonia Rozental, Giulia M. P. dos Santos, Renata O. R. Calixto, Eliana Barreto-Bergter, Lukas Y. Wick, Jan Dirk van Elsas

Abstract

The soil bacterium Burkholderia terrae strain BS001 can interact with varying soil fungi, using mechanisms that range from the utilization of carbon/energy sources such as glycerol to the ability to reach novel territories in soil via co-migration with growing fungal mycelia. Here, we investigate the intrinsic properties of the B. terrae BS001 interaction with the basidiomycetous soil fungus Lyophyllum sp. strain Karsten. In some experiments, the ascomycetous Trichoderma asperellum 302 was also used. The hyphae of Lyophyllum sp. strain Karsten were largely hydrophilic on water-containing media versus hydrophobic when aerial, as evidenced by contact angle analyses (CA). Co-migration of B. terrae strain BS001 cells with the hyphae of the two fungi occurred preferentially along the - presumably hydrophilic - soil-dwelling hyphae, whereas aerial hyphae did not allow efficient migration, due to reduced thickness of their surrounding mucous films. Moreover, the cell numbers over the length of the hyphae in soil showed an uneven distribution, i.e., the CFU numbers increased from minima at the inoculation point to maximal numbers in the middle of the extended hyphae, then decreasing toward the terminal side. Microscopic analyses of the strain BS001 associations with the Lyophyllum sp. strain Karsten hyphae in the microcosms confirmed the presence of B. terrae BS001 cells on the mucous matter that was present at the hyphal surfaces of the fungi used. Cell agglomerates were found to accumulate at defined sites on the hyphal surfaces, which were coined 'fungal-interactive' hot spots. Evidence was further obtained for the contention that receptors for a physical bacterium-fungus interaction occur at the Lyophyllum sp. strain Karsten hyphal surface, in which the specific glycosphingolipid ceramide monohexoside (CMH) plays an important role. Thus, bacterial adherence may be mediated by heterogeneously distributed fungal-specific receptors, implying the CMH moieties. This study sheds light on the physical aspects of the B. terrae BS001 - Lyophyllum sp. strain Karsten interaction, highlighting heterogeneity along the hyphae with respect to hydrophobicity and the presence of potential anchoring sites.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 32%
Student > Master 5 16%
Student > Bachelor 3 10%
Student > Ph. D. Student 3 10%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 39%
Biochemistry, Genetics and Molecular Biology 6 19%
Environmental Science 5 16%
Immunology and Microbiology 1 3%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 November 2016.
All research outputs
#14,867,424
of 22,896,955 outputs
Outputs from Frontiers in Microbiology
#13,865
of 24,948 outputs
Outputs of similar age
#187,941
of 314,207 outputs
Outputs of similar age from Frontiers in Microbiology
#246
of 421 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,948 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,207 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 421 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.