↓ Skip to main content

Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in…

Overview of attention for article published in Frontiers in Microbiology, December 2016
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
175 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells
Published in
Frontiers in Microbiology, December 2016
DOI 10.3389/fmicb.2016.01981
Pubmed ID
Authors

Carina-Shianya Alvarez, Josefa Badia, Manel Bosch, Rosa Giménez, Laura Baldomà

Abstract

The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrier integrity by reducing gut permeability and reinforcing tight junctions. Probiotic Escherichia coli Nissle 1917 (EcN) is a good colonizer of the human gut with proven therapeutic efficacy in the remission of ulcerative colitis in humans. EcN positively modulates the intestinal epithelial barrier through upregulation and redistribution of the tight junction proteins ZO-1, ZO-2 and claudin-14. Upregulation of claudin-14 has been attributed to the secreted protein TcpC. Whether regulation of ZO-1 and ZO-2 is mediated by EcN secreted factors remains unknown. The aim of this study was to explore whether outer membrane vesicles (OMVs) released by EcN strengthen the epithelial barrier. This study includes other E. coli strains of human intestinal origin that contain the tcpC gene, such as ECOR63. Cell-free supernatants collected from the wild-type strains and from the derived tcpC mutants were fractionated into isolated OMVs and soluble secreted factors. The impact of these extracellular fractions on the epithelial barrier was evaluated by measuring transepithelial resistance and expression of several tight junction proteins in T-84 and Caco-2 polarized monolayers. Our results show that the strengthening activity of EcN and ECOR63 does not exclusively depend on TcpC. Both OMVs and soluble factors secreted by these strains promote upregulation of ZO-1 and claudin-14, and down-regulation of claudin-2. The OMVs-mediated effects are TcpC-independent. Soluble secreted TcpC contributes to the upregulation of ZO-1 and claudin-14, but this protein has no effect on the transcriptional regulation of claudin-2. Thus, in addition to OMVs and TcpC, other active factors released by these microbiota strains contribute to the reinforcement of the epithelial barrier.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 175 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
France 1 <1%
Unknown 173 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 15%
Student > Master 22 13%
Researcher 21 12%
Student > Bachelor 17 10%
Student > Doctoral Student 11 6%
Other 33 19%
Unknown 45 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 37 21%
Agricultural and Biological Sciences 27 15%
Immunology and Microbiology 22 13%
Medicine and Dentistry 12 7%
Pharmacology, Toxicology and Pharmaceutical Science 5 3%
Other 16 9%
Unknown 56 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 January 2017.
All research outputs
#16,357,504
of 24,093,053 outputs
Outputs from Frontiers in Microbiology
#16,699
of 27,122 outputs
Outputs of similar age
#263,872
of 428,554 outputs
Outputs of similar age from Frontiers in Microbiology
#261
of 375 outputs
Altmetric has tracked 24,093,053 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 27,122 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 428,554 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 375 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.