↓ Skip to main content

Micro-Patterned Surfaces That Exploit Stigmergy to Inhibit Biofilm Expansion

Overview of attention for article published in Frontiers in Microbiology, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Micro-Patterned Surfaces That Exploit Stigmergy to Inhibit Biofilm Expansion
Published in
Frontiers in Microbiology, January 2017
DOI 10.3389/fmicb.2016.02157
Pubmed ID
Authors

Erin S. Gloag, Christopher Elbadawi, Cameron J. Zachreson, Igor Aharonovich, Milos Toth, Ian G. Charles, Lynne Turnbull, Cynthia B. Whitchurch

Abstract

Twitching motility is a mode of surface translocation that is mediated by the extension and retraction of type IV pili and which, depending on the conditions, enables migration of individual cells or can manifest as a complex multicellular collective behavior that leads to biofilm expansion. When twitching motility occurs at the interface of an abiotic surface and solidified nutrient media, it can lead to the emergence of extensive self-organized patterns of interconnected trails that form as a consequence of the actively migrating bacteria forging a furrow network in the substratum beneath the expanding biofilm. These furrows appear to direct bacterial movements much in the same way that roads and footpaths coordinate motor vehicle and human pedestrian traffic. Self-organizing systems such as these can be accounted for by the concept of stigmergy which describes self-organization that emerges through indirect communication via persistent signals within the environment. Many bacterial communities are able to actively migrate across solid and semi-solid surfaces through complex multicellular collective behaviors such as twitching motility and flagella-mediated swarming motility. Here, we have examined the potential of exploiting the stigmergic behavior of furrow-mediated trail following as a means of controlling bacterial biofilm expansion along abiotic surfaces. We found that incorporation of a series of parallel micro-fabricated furrows significantly impeded active biofilm expansion by Pseudomonas aeruginosa and Proteus vulgaris. We observed that in both cases bacterial movements tended to be directed along the furrows. We also observed that narrow furrows were most effective at disrupting biofilm expansion as they impeded the ability of cells to self-organize into multicellular assemblies required for escape from the furrows and migration into new territory. Our results suggest that the implementation of micro-fabricated furrows that exploit stigmergy may be a novel approach to impeding active biofilm expansion across abiotic surfaces such as those used in medical and industrial settings.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 31%
Researcher 6 21%
Student > Bachelor 2 7%
Other 2 7%
Student > Doctoral Student 1 3%
Other 4 14%
Unknown 5 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 24%
Engineering 4 14%
Biochemistry, Genetics and Molecular Biology 3 10%
Chemical Engineering 2 7%
Physics and Astronomy 2 7%
Other 8 28%
Unknown 3 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 February 2017.
All research outputs
#4,469,025
of 24,503,376 outputs
Outputs from Frontiers in Microbiology
#4,353
of 27,802 outputs
Outputs of similar age
#85,219
of 427,663 outputs
Outputs of similar age from Frontiers in Microbiology
#120
of 406 outputs
Altmetric has tracked 24,503,376 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 27,802 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,663 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 406 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.