↓ Skip to main content

Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence

Overview of attention for article published in Frontiers in Microbiology, January 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence
Published in
Frontiers in Microbiology, January 2017
DOI 10.3389/fmicb.2017.00098
Pubmed ID
Authors

Tejas Bouklas, Neena Jain, Bettina C. Fries

Abstract

The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans' replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal's effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells were used for infection, which confirmed target specificity and ruled out non-specific effects of the drugs on the Galleria host. Thus, this study suggests that RLS modulating drugs, such as Sir2p agonists, shift lifespan and vulnerability of the fungal population, and should be further investigated as a potential class of novel antifungal drug targets that can enhance antifungal efficacy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
South Africa 1 5%
Brazil 1 5%
Unknown 18 90%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 30%
Researcher 5 25%
Student > Postgraduate 2 10%
Student > Master 2 10%
Professor 1 5%
Other 2 10%
Unknown 2 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 40%
Agricultural and Biological Sciences 5 25%
Immunology and Microbiology 3 15%
Social Sciences 1 5%
Medicine and Dentistry 1 5%
Other 0 0%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 February 2017.
All research outputs
#16,688,979
of 24,546,092 outputs
Outputs from Frontiers in Microbiology
#17,191
of 27,873 outputs
Outputs of similar age
#266,959
of 428,827 outputs
Outputs of similar age from Frontiers in Microbiology
#305
of 423 outputs
Altmetric has tracked 24,546,092 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 27,873 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 428,827 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 423 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.