↓ Skip to main content

Increased Biological Activity of Aneurinibacillus migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites

Overview of attention for article published in Frontiers in Microbiology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
peer_reviews
1 peer review site

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increased Biological Activity of Aneurinibacillus migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites
Published in
Frontiers in Microbiology, April 2017
DOI 10.3389/fmicb.2017.00517
Pubmed ID
Authors

Faizah N. Alenezi, Imen Rekik, Ali Chenari Bouket, Lenka Luptakova, Hedda J. Weitz, Mostafa E. Rateb, Marcel Jaspars, Stephen Woodward, Lassaad Belbahri

Abstract

The soil-borne gram-positive bacteria Aneurinibacillus migulanus strain Nagano shows considerable potential as a biocontrol agent against plant diseases. In contrast, A. migulanus NCTC 7096 proved less effective for inhibition of plant pathogens. Nagano strain exerts biocontrol activity against some gram-positive and gram-negative bacteria, fungi and oomycetes through the production of gramicidin S (GS). Apart from the antibiotic effects, GS increases the rate of evaporation from the plant surface, reducing periods of surface wetness and thereby indirectly inhibiting spore germination. To elucidate the molecular basis of differential biocontrol abilities of Nagano and NCTC 7096, we compared GS production and biosurfactant secretion in addition to genome mining of the genomes. Our results proved that: (i) Using oil spreading, blood agar lysis, surface tension and tomato leaves wetness assays, Nagano showed increased biosurfactant secretion in comparison with NCTC 7096, (ii) Genome mining indicated the presence of GS genes in both Nagano and NCTC 7096 with two amino acid units difference between the strains: T342I and P419S. Using 3D models and the DUET server, T342I and P419S were predicted to decrease the stability of the NCTC 7096 GS synthase, (iii) Nagano produced two additional GS-like molecules GS-1155 (molecular weight 1155) and GS-1169 (molecular weight 1169), where one or two ornithine residues replace lysine in the peptide. There was also a negative correlation between surface tension and the quantity of GS-1169 present in Nagano, and (iv) the Nagano genome had a full protein network of exopolysaccharide biosynthesis in contrast to NCTC 7096 which lacked the first enzyme of the network. NCTC 7096 is unable to form biofilms as observed for Nagano. Different molecular layers, mainly gramicidin secondary metabolite production, account for differential biocontrol abilities of Nagano and NCTC 7096. This work highlighted the basis of differential biological control abilities between strains belonging to the same species and demonstrates techniques useful to the screening of effective biocontrol strains for environmentally friendly secondary metabolites that can be used to manage plant pathogens in the field.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 17%
Researcher 7 17%
Student > Ph. D. Student 6 14%
Student > Master 4 10%
Student > Doctoral Student 2 5%
Other 3 7%
Unknown 13 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 17%
Biochemistry, Genetics and Molecular Biology 5 12%
Business, Management and Accounting 3 7%
Chemistry 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 7 17%
Unknown 15 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2017.
All research outputs
#14,929,731
of 22,963,381 outputs
Outputs from Frontiers in Microbiology
#13,893
of 25,009 outputs
Outputs of similar age
#184,644
of 309,935 outputs
Outputs of similar age from Frontiers in Microbiology
#323
of 497 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,009 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 497 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.