↓ Skip to main content

Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System

Overview of attention for article published in Frontiers in Microbiology, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System
Published in
Frontiers in Microbiology, April 2017
DOI 10.3389/fmicb.2017.00630
Pubmed ID
Authors

Jichen Wang, Lei Ni, Yang Song, Geoff Rhodes, Jing Li, Qiwei Huang, Qirong Shen

Abstract

Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stages of wheat and rice growth and under four fertilization regimes: no nitrogen fertilization (NNF), chemical fertilization (CF), organic-inorganic mixed fertilizer (OIMF) and organic fertilization (OF). The abundance and composition of ammonia oxidizers were analyzed using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) of their amoA genes. Results showed that fertilization but not plant growth stages was the best predictor of soil AOB community abundance and composition. Soils fertilized with more urea-N had higher AOB abundance, while organic-N input showed little effect on AOB abundance. 109 bp T-RF (Nitrosospira Cluster 3b) and 280 bp T-RF (Nitrosospira Cluster 3c) dominated the AOB communities with opposing responses to fertilization regimes. Although the abundance and composition of the AOA community was significantly impacted by fertilization and plant growth stage, it differed from the AOB community in that there was no particular trend. In addition, across the whole wheat-rice rotation stages, results of multiple stepwise linear regression revealed that AOB played a more important role in ammonia oxidizing process than AOA. This study provided insight into the dynamic effects of fertilization strategies on the abundance and composition of ammonia-oxidizers communities, and also offered insights into the potential of managing nitrogen for sustainable agricultural productivity with respect to soil ammonia-oxidizers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 24%
Student > Doctoral Student 5 12%
Researcher 5 12%
Student > Master 5 12%
Student > Bachelor 1 2%
Other 3 7%
Unknown 13 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 33%
Environmental Science 3 7%
Biochemistry, Genetics and Molecular Biology 3 7%
Arts and Humanities 1 2%
Computer Science 1 2%
Other 4 10%
Unknown 16 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2017.
All research outputs
#18,546,002
of 22,968,808 outputs
Outputs from Frontiers in Microbiology
#19,466
of 25,018 outputs
Outputs of similar age
#235,831
of 310,014 outputs
Outputs of similar age from Frontiers in Microbiology
#398
of 497 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,018 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,014 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 497 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.