↓ Skip to main content

The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate

Overview of attention for article published in Frontiers in Microbiology, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate
Published in
Frontiers in Microbiology, May 2017
DOI 10.3389/fmicb.2017.00937
Pubmed ID
Authors

Milka Popova, Emily McGovern, Matthew S. McCabe, Cécile Martin, Michel Doreau, Marie Arbre, Sarah J. Meale, Diego P. Morgavi, Sinéad M. Waters

Abstract

Microorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%) compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in the rumen. Principal component analysis revealed significant differences in taxonomic composition and abundance of bacterial communities between rumen and cecum. Treatment decreased the relative abundance of a few Ruminococcaceae genera, without affecting global bacterial community structure. Our research confirms a high level of heterogeneity in species composition of microbial consortia in the main gastrointestinal compartments where feed is fermented in ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 31%
Student > Ph. D. Student 10 16%
Student > Master 9 15%
Student > Doctoral Student 4 7%
Other 2 3%
Other 6 10%
Unknown 11 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 43%
Veterinary Science and Veterinary Medicine 9 15%
Biochemistry, Genetics and Molecular Biology 3 5%
Computer Science 3 5%
Environmental Science 2 3%
Other 5 8%
Unknown 13 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2017.
All research outputs
#3,702,276
of 22,974,684 outputs
Outputs from Frontiers in Microbiology
#3,456
of 25,034 outputs
Outputs of similar age
#66,309
of 313,660 outputs
Outputs of similar age from Frontiers in Microbiology
#129
of 514 outputs
Altmetric has tracked 22,974,684 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,034 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,660 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 514 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.