↓ Skip to main content

Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier

Overview of attention for article published in Frontiers in Microbiology, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier
Published in
Frontiers in Microbiology, June 2017
DOI 10.3389/fmicb.2017.01028
Pubmed ID
Authors

Jianqing Tian, Yuchen Qiao, Bing Wu, Huai Chen, Wei Li, Na Jiang, Xiaoling Zhang, Xingzhong Liu

Abstract

Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2-188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 (Cryptococcus terricola) increased with successional distance, whereas that of OTU65 (Tolypocladium tundrense) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and [Formula: see text]-N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 16%
Student > Ph. D. Student 10 15%
Student > Master 8 12%
Professor 4 6%
Student > Doctoral Student 4 6%
Other 9 13%
Unknown 21 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 27%
Environmental Science 13 19%
Biochemistry, Genetics and Molecular Biology 8 12%
Immunology and Microbiology 1 1%
Social Sciences 1 1%
Other 0 0%
Unknown 26 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2017.
All research outputs
#13,555,965
of 22,979,862 outputs
Outputs from Frontiers in Microbiology
#10,612
of 25,038 outputs
Outputs of similar age
#161,467
of 317,132 outputs
Outputs of similar age from Frontiers in Microbiology
#285
of 523 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,038 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,132 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 523 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.