↓ Skip to main content

The Conserved Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in Streptomyces venezuelae NRRL B-65442

Overview of attention for article published in Frontiers in Microbiology, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
32 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Conserved Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in Streptomyces venezuelae NRRL B-65442
Published in
Frontiers in Microbiology, June 2017
DOI 10.3389/fmicb.2017.01145
Pubmed ID
Authors

Nicolle F. Som, Daniel Heine, Neil A. Holmes, John T. Munnoch, Govind Chandra, Ryan F. Seipke, Paul A. Hoskisson, Barrie Wilkinson, Matthew I. Hutchings

Abstract

Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Production of antibiotics is usually coordinated with the onset of sporulation but the cross regulation of these processes is not fully understood. This is important because most Streptomyces antibiotics are produced at low levels or not at all under laboratory conditions and this makes large scale production of these compounds very challenging. Here, we characterize the highly conserved actinobacterial two-component system MtrAB in the model organism Streptomyces venezuelae and provide evidence that it coordinates production of the antibiotic chloramphenicol with sporulation. MtrAB are known to coordinate DNA replication and cell division in Mycobacterium tuberculosis where TB-MtrA is essential for viability but MtrB is dispensable. We deleted mtrB in S. venezuelae and this resulted in a global shift in the metabolome, including constitutive, higher-level production of chloramphenicol. We found that chloramphenicol is detectable in the wild-type strain, but only at very low levels and only after it has sporulated. ChIP-seq showed that MtrA binds upstream of DNA replication and cell division genes and genes required for chloramphenicol production. dnaA, dnaN, oriC, and wblE (whiB1) are DNA binding targets for MtrA in both M. tuberculosis and S. venezuelae. Intriguingly, over-expression of TB-MtrA and gain of function TB- and Sv-MtrA proteins in S. venezuelae also switched on higher-level production of chloramphenicol. Given the conservation of MtrAB, these constructs might be useful tools for manipulating antibiotic production in other filamentous actinomycetes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 32 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 79 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 16%
Student > Bachelor 11 14%
Researcher 11 14%
Student > Master 10 13%
Student > Doctoral Student 4 5%
Other 4 5%
Unknown 26 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 24%
Agricultural and Biological Sciences 18 23%
Immunology and Microbiology 4 5%
Chemistry 3 4%
Economics, Econometrics and Finance 2 3%
Other 6 8%
Unknown 27 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2017.
All research outputs
#1,910,580
of 25,075,028 outputs
Outputs from Frontiers in Microbiology
#1,303
of 28,733 outputs
Outputs of similar age
#36,273
of 321,050 outputs
Outputs of similar age from Frontiers in Microbiology
#47
of 529 outputs
Altmetric has tracked 25,075,028 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 28,733 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,050 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 529 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.